CSCE 458/858 - Molecular and Nanoscale Communication

Fall 2019, Time: M W F 1:30-2:20PM, Location: Avery 119

Instructor
Dr. Massimiliano Pierobon
Assistant Professor
107 Schorr Center
Department of Computer Science and Engineering
University of Nebraska-Lincoln
Lincoln, NE 68508

Tel: (402) 472-5021
Fax: (402) 472-7767
E-mail: pierobon@cse.unl.edu

Office Hours
Monday, Wednesday 2:30PM – 3:30PM (after lecture) or by appointment.

Description
Develop an understanding of the different options to realize communication at the nanoscale among nano-precise entities, or nanomachines, being they genetically engineered biological cells or man-made nano-devices. The specific focus will be on bio-inspired communication through molecule exchange and biochemical reactions. Different techniques to realize nanomachines will be surveyed in the course, with particular attention to the tools provided by synthetic biology for the programming of biological cooperative systems. This course will give a chance to be initiated to a very exciting cutting-edge research field, which will soon influence many diverse research fields, such as engineering, chemistry, biology, and medicine.

Prerequisites
A grade of "P" or "C" or better in CSCE 310, CSCE 310H, CSCE 311, SOFT 260, SOFT 260H or RAIO 283H; STAT 380, ECEN 305 or RAIO 270H. Completing CSCE 462/862 and CSCE 465/865 prior to taking this course is recommended. Exceptions can be granted on a per-student basis by the instructor.

Good standing undergraduate/graduate student from Computer Science and Engineering, Electrical Engineering, Chemical Engineering, Biology, Chemistry, Chemical and Biomolecular Engineering, and Mathematics, or upon instructor permission.

Most of the necessary concepts from physics, chemistry, and biology, as well as from systems and communication engineering, will be provided during the lectures to accommodate students with different backgrounds, and let them benefit from a truly interdisciplinary approach. Student creativity, passion, and open-minded attitude will be highly appreciated.
and rewarded.

Required Textbook

"Fundamentals of Diffusion-Based Molecular Communication in Nanonetworks"
by Massimiliano Pierobon, Ian F. Akyildiz
Now Publishers Inc (April 30, 2014)
ISBN-10: 1601988168

Selected lectures of this course will be based on the following additional textbooks (not required):

- Synthetic Biology — A Primer
 by Paul S Freemont and Richard I Kitney

- Communication Systems Engineering
 by John G. Proakis and Masoud Salehi

Lecture slides (PDF) will be available on the course’s homepage.

A list of reference books and research papers will be given throughout the semester.

Some of the research papers and reports will be distributed via the course’s homepage.

HOMEWORKS and EXAMS will be based on what explained during the lectures and supplemental reading materials.

Course Topics

0. Course Presentation
 1. Overview of Molecular and Nanoscale Communication: from Motivation to Application
 2. Introduction to Molecular Communication Theory
 3. Analysis of Molecular Communication Systems
 4. Molecular Communication and Biochemical Pathways
 5. Molecular Communication and Electrochemistry
 6. Design/Engineering of Molecular Communication Systems
 7. Molecular Communication and Neurons
 8. Molecular Communication and Synthetic Biology
 9. Towards the Internet of Bio-Nano Things

Course Organization

There will be TWO (OPEN NOTES) exams, FOUR homeworks, and ONE TEAM PROJECT assignment.

Grade Distribution

Homeworks: 15%
Lab Assignments: 5%
Exam 1 (OPEN NOTES): 20%
Exam 2 (OPEN NOTES): 20%
Project: 35%
In-class Participation: 5%

Final letter grades will be assigned tentatively based on the following scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>≥ 100</td>
</tr>
<tr>
<td>A</td>
<td>97% to 100%</td>
</tr>
<tr>
<td>A−</td>
<td>94% to 96%</td>
</tr>
<tr>
<td>B+</td>
<td>90% to 93%</td>
</tr>
<tr>
<td>B</td>
<td>87% to 89%</td>
</tr>
<tr>
<td>B−</td>
<td>84% to 86%</td>
</tr>
<tr>
<td>C+</td>
<td>80% to 83%</td>
</tr>
<tr>
<td>C</td>
<td>77% to 79%</td>
</tr>
<tr>
<td>C−</td>
<td>74% to 76%</td>
</tr>
<tr>
<td>D+</td>
<td>70% to 73%</td>
</tr>
<tr>
<td>D</td>
<td>67% to 69%</td>
</tr>
<tr>
<td>D−</td>
<td>64% to 66%</td>
</tr>
<tr>
<td>F</td>
<td>≤ 63%</td>
</tr>
</tbody>
</table>

Homeworks
Homework submissions will be through web handin
Late homework is penalized 10% per day, and no homework will be accepted after the solution is posted online

Exams
There will be TWO in-class exams.
All exams are OPEN NOTES.

Project
There will be half-semester-long projects, focused on the design, analysis and presentation to the class (at the end of the semester) of a diffusion-based molecular communication system within the COMSOL Multiphysics environment (or equivalent physical modeling software). The project will be assigned students divided into teams according to the class size.

458 Vs. 858
This course will not have major differences between the 458 and 858 versions in the delivery of the content. Instead, some selected questions in the exams and lab assignments will be mandatory for 858 students, and optional for 458 students.

Academic Integrity
All homework assignments, quizzes, exams, etc. must be your own work. No direct collaboration with fellow students, past or current, is allowed unless otherwise stated. The Computer Science & Engineering department has an Academic Integrity Policy:

http://cse.unl.edu/ugrad/resources/academic_integrity.php

All students enrolled in any computer science course are bound by this policy. You are expected to read, understand, and follow this policy. Violations will be dealt with on a case by case basis and may result in a failing assignment or a failing grade for the course itself.
Students with Disabilities	Students with disabilities are encouraged to contact the instructor for a confidential discussion of their individual needs for academic accommodation. It is the policy of the University of Nebraska-Lincoln to provide flexible and individualized accommodations to students with documented disabilities that may affect their ability to fully participate in course activities or to meet course requirements. To receive accommodation services, students must be registered with the Services for Students with Disabilities (SSD) office, 232 Canfield Administration, 472-3787 voice or TTY.
Suggestion Box	The CSE Department has an anonymous suggestion box (http://cse.unl.edu/department/suggestion.php) that you may use to voice your concerns about any problems in the course or department if you do not wish to be identified.
Stay Up-to-date	It is CSE Department policy that all students in CSE courses are expected to regularly check their email so they do not miss important announcements.
CSE Resource Student Center	The CSE Student Resource Center (Avery Hall Rm 12) is intended to provide UNL Computer Science and Computer Engineering majors who are new to the program with a set of resources that will help them assimilate to college life and encourage them to continue their study of Computer Science and Computer Engineering (http://cse.unl.edu/src).

This syllabus will be updated and expanded as the semester progresses.