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Abstract

Microorganisms naturally form community ecosystems to improve fitness in diverse environments and conduct otherwise
intractable processes. Microbial communities are therefore central to biogeochemical cycling, human health, agricultural
productivity, and technologies as nuanced as nanotechnology-enabled devices; however, the combinatorial scaling of
exchanges with the environment that predicate community functions are experimentally untenable. Several computational
tools have been presented to capture these exchanges, yet, no attempt has been made to understand the total information
flow to a community from its environment. We therefore adapted a recently developed model for singular organisms, which
blends molecular communication and the Shannon Information theory to quantify information flow, to communities and
exemplify this expanded model on idealized communities: one of Escherichia coli (E. coli) and Pseudomonas fluorescens to
emulate an ecological community and the other of Bacteroides thetaiotaomicron (B. theta) and Kleb Ciella to emulate a
human microbiome interaction. Each of these sample communities exhibit critical syntrophy in certain environmental
conditions, which should be evident through our community mutual information model. We further explored alternative
frameworks for constructing community genome-scale metabolic models (GEMs) — mixed-bag and compartmentalized.
Our study revealed that information flow is greater through communities than isolated models, and that the mixed-bag
framework conducts greater information flow than the compartmentalized framework for community GEMs, presumably
because the latter is encumbered with transport reactions that are absent in the former. This community Mutual
Information model is furthermore wrapped as a KBase Application (Run Flur Mutual Information Analysis, RFMIA)
for optimum accessibility to biological investigators. We anticipate that this unique quantitative approach to consider
information flow through metabolic systems will accelerate both basic and applied discovery in diverse biological fields.

Author Summary

Author summary

Microorganisms frequently communicate information via information-bearing molecules, which must be fundamentally
understood to engineer biological cells that properly engage with their environments, such as the envisioned Internet
of Bio-NanoThings. The study of these molecular communications has employed information and communication
theory to analyze the exchanged information via chemical reactions and molecular transport. We introduce an
information- and communication-centric computational approach to estimate the information flow in biological cells
and its impacts on the behavior of single organisms and communities. This study complements our previous work
of cell metabolism by developing an end-to-end perspective of molecular communication based on enzyme-regulated
reactions. We explore the mutual information using Shannon information theory, measured in bits, between
influential nutrients and cellular growth rate. The developed RFMIA computational tool is deployed in the U.S.
Department of Energy’s Systems Biology Knowledgebase, where it quantitatively estimates information flow in
both organism and community metabolic networks and extends recent developments in computer communications
to explore and explain a new biology for the open-source community.

Introduction )

Microorganisms naturally assemble into communities to diversify strengths and weakness and to conduct complex functions
such as biogeochemical cycling, intricate bioproduction, and digesting intractable nutrients. Cellular metabolism is the
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foundation of these transformative processes, where chemical reactions convert environmental substrates into energy
and biomass in a tightly regulated pipeline [1] (Fig. 1). These reactions are activated by the cell’s environment to
optimally survive, often meaning growth and reproduction [2]. Environmental perturbations may therefore be useful to
control cellular behaviors, although the limits of this approach and the communication mechanisms by which cells and
communities coordinate functions in response to environmental triggers remain opaque. The specific mediating molecules
(e.g. quorum sensing) and triggers for these communication mechanisms represent a large knowledge gap [3,4] around
cellular communication. Community communications especially remain understudied [5], partly due to the difficulty in
recovering representative samples [6]; hence computational biology is an attractive alternative domain to study communities
without necessitating a complete experimental description of a system. Some computational models apply top-down
ecological principles to represent microbial communities while other models represent communities from the bottom-up
assembly of metabolic pathways and fundamental biochemistry [7]. Molecular communication (MC) in Fig. 1 is an ideal
blend of both approaches — while also leveraging mathematics, computer science, and chemical engineering — to fully
capture the multi-dimensional complexity of community interactions by deducing information flow from chemical exchanges.
We previously derived an MC abstraction of a single communication channel of interdependent inputs and outputs [8],
where information propagates from media into cellular metabolism and where we derived quantitative limits for this
information flow [9], and for a two molecular communication channels for each community [10]: one where regulatory
mechanisms depend upon combinations of extracellular compounds, and the other where cell metabolism depends on
growth and extracellular exchange. The application of information theory in these papers (illustrated in Fig. 2) expresses
the performance of both channels and examined the end-to-end (E2E) limits to molecular communication system, such as
exchange flux and biomass growth.

Herein, we expand our previously defined molecular communication model into a Mutual Information score (MI) that
is crafted to examine community systems. with different combinations of seven substrates for two human gut microbes
— an obligate anaerobe bacterium B. theta and an Archaea M. smithii, where the substrates were found to propagate
different amounts of information [?]. The MI score uniquely 1) characterizes cellular and inter-species molecule exchanges,
2) detects extracellular signatures — exchange fluxes and biomass growth — that indicate intra-cellular information flow,
and 3) generates data that can reveal community interactions and thereby minimize resource-intensive experiments to
elucidate community communications and their sensitivity to environmental perturbations. MI in Fig. 2 leverages Shannon
information theory [11,12] to quantify variability in metabolic information flow and steady-state FBA [13] to define an
upper limit of information flow from the given environment based on metabolic flux, biomass growth, and E2E (uptake,
secretion of metabolites and biomass). Shannon’s theory defines information as the details that distinguish a state of a
system from the space of possible system states, which is depicted in Fig. 3. The MI score is the uncertainty difference
between the uncertainty contained in the input molecule(s) and the conditional uncertainty of the channel output, and
thereby quantifies information change via each channel. We exemplify the MI score to understand an idealized microbiome
community of Escherichia coli (E. coli) and Bacteroides thetaiotaomicron (B. theta) that has a prominent role on our
adaptive immunity [14] and biotic health [15], and which exhibits a unique community synergy of B. theta only growing
in aerobic environments when coupled with E. coli [16]. We moreover compared the information differences between
two alternative frameworks for defining community GEMs: 1) the mixed-bag framework, where all member networks
are pooled into a single network; and (2) the compartmentalized framework, where each member network is segregated
into a designated compartment that can exchange with a common environment compartment. We consistently observe a
higher MI score in communities, especially the mixed-bag abstraction, relative to isolates, which is qualitatively expected
yet quantitatively invaluable when comparing different community designs or ecological factors that govern community
formation. The MI score therefore has far-reaching implications in diverse biological fields and should accelerate engineering
efforts of controlling microbiomes or synthesizing communities. The MI score is available as a point-and-click Application
(Run Flux Mutual Information Analysis, REFMIA in the U.S. Department of Energy’s Systems Biology Knowledgebase
(KBase) [17] where genomes can be constructed into metabolic networks and ultimately merged community models [18]
(See the example KBase Narrative: https://kbase.us/n/40576/330/).

Materials and Methods

Mutual Information (I) is defined as the input uncertainty minus the output uncertainty that depends on the inputs: I =
H (inputs) — H (inputs, outputs). The MI was applied to explore how much environmental perturbations (inputs = {ci}ivzl,
as the concentration of all N examined substrates) can control metabolic flux and biomass growth (outputs = ({Fe}f:1 ,Gr),
as all exchange fluxes and the biomass growth flux [10], respectively). The MI for the overall E2E channel quantifies
information flow that can be perceived from the environment through exchange fluxes and biomass growth
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Fig 1. Molecular communication systems send and receive information through chemical reactions.
Information flows from the cell’s environment in the form of input signals such as signaling molecules, metabolites,
environmental stress sources like temperature, and pH. Output information flows from the metabolic state and how
information of the internal cell state can be perceived from the outside environment in the form of growth of a cell,

proteins and apoptosis of a cell.

Upper Bound to the Steady-State Mutual Information — UBS-sMI

FBA is employed to computationally evaluate (1) and (3), which yields the profile of activated reactions in a given the

environment and enables estimating the state {r*}f\/ll that maximizes biomass production and the associated fluxes i.e.,

{U} }z > ASHY_, . (Gr)". Parsimonious FBA (pFBA) [19] is furthermore applied to reduce the space of optimal solutions
to those with the lowest total flux, thereby imposing a secondary optimization of metabolic efficiency while improving
reproducibility of the predicted flux profiles. The upper bound for MI of metabolic flux [9]:

N M N N M
I{eitizy i {ritiz) = H{aitizy) — H{eidiz, [{ri 1iz) (1)
where {c¢;},_; is the initial concentrations. The relations between M1T and its upper bound
N M N M
I({eitinys{ri tize) = I{eid il s{radizy) - (2)
and M1 of biomass growth and its upper bound

I UL (S5, Gr). (3)

. . . N T J *
are analogously derived. The upper bound of the E2E steady-state mutual information I({c;},_,;{U;},_;, {Sj}jzl ,Gr*)
is solved by substituting {ri}ij\il with {ci}fil and then integrating. The mathematical formulation is presented in

supplementary S1.
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Reconstruction of Community Models

We sourced published GEMs for E. coli/iML1515 [20] and B. theta/iAH991 [21] that offer the most complete and
experimentally-validated reconstructions to-date for these organisms. These member GEMs were assembled to a mixed-bag
community model — the pooled amalgamation of all reactions — and as a compartmentalized community model — each GEM
is assigned a unique compartment and all compartments exchange with a common extracellular compartment — which
are contrasted in Fig. 4. These community model frameworks are functionally identical in FBA, with the difference that
transport reactions are not present in mixed-bag community models since they lack compartments. The Merge metabolic
models into community model tool in KBase constructed each version of community model for the two-member
community.

Mutual Information score

The MI is a metric in units of bits for the metabolic ability to process information from a given environment, where the
activity of state-changing chemical reactions are either activated (1) or inactive (0) depending on the media. The MI score
is proportional with information flow between the cell metabolism and its environment.

Results

Integration of the Mutual Information Approach in KBase

The RFMIA KBase Application in Fig. 6 executes the MI score, where the user-friendly workflow in Fig. 5 accepts inputs
of the models, media components, a mmol of carbon consumption limit, and model objectives and returns tables and
charts that succinctly communicate information flows as well as rank compounds based on their influence on information
flow. Steps 1-5 in Fig. 5a,b explain the backend processes of the RFMIA KBase App.

Integration of Published E. coli and B. theta Models and Combination into Community
models

The FBA simulation results, GEM metadata, and growth rates for aerobic and anaerobic conditions among each of the
seven input nutrients are tabulated in Table 1 (corollary content is available in S3 and Narrative https://kbase.us/
n/81575/184/). The published individual models were subtly curated with missing pathways that are necessary for our
simulation: E. coli was curated to produce dextrin from starch and sucrose and B. theta/iAH991V2 was curated by
adding choline exchange and transporter reactions and removing sink-chols_c0 and sink-hpyr_c0 sink reactions (the final
models are available in Narrative https://kbase.us/n/40576/330/). We constrain the total number of carbon atoms

that a model can consume — 60% by default, which corresponds to 10% when glucose is the only carbon

source — to limit simulated growth to a reasonable value even when several carbon sources are simultaneously utilized.

The ecological role of B. theta as an aerotolerant — can survive but not grow in aerobic environments [22] — digester of
polysaccharides [23] was captured by manually setting M I and biomass growth in its GEM to zero when the isolated
model was simulated in an aerobic environment, while leaving the GEM unconstrained in a community.

Several noteworthy observations are available from the various models in the various media. First, the community
models, especially the mixed-bag model, generally exhibited higher growth relative to the individual models, although the
highest for growth was observed with F. coli in aerobic conditions. Second, the community models successfully grew on
dextrin despite that E. coli failed to grow as an isolate, which may be explained by FE. coli’s inability metabolize complex
polysaccharides [24] but this is not completely understood [25]. Third, the community models grew on glutamine (a nitrogen
source) equivalently to glucose and dextrin (carbon sources), however, E. coli nearly doubled and tripled the community
growth rate in anaerobic and aerobic conditions on glutamine relative to the carbon sources, respectively. Finally, the
community models grew equivalently on sulfate as glucose (the mixed-bag model grew slightly more, while B. theta failed
to grow and E. coli grew slightly more than the community models. The first two observations demonstrate community
synergy that may justify its stable formation among these members. The latter two observations reveal conditions where FE.
coli self-sacrifices to join the community, since it could grow more as an independent isolate, notwithstanding that sulfur
metabolism in bacteria is poorly understood [20].
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Single Community

Model Statistics B theta E.coli /iML1515 MB cem
Original Model Description
Number reactions 1246 2379 3166 3625
Number compounds 1179 1878 2398 2944
Genes 993 1515 2508 2508

2 3 3 5
c0-Cytosol
Number compartments c0-Cytosol ZgzcE:){:?:(?elllular gg:gﬁfasc?éllular g;:g tciféita
e0-Extracellular pO-Periplasm p1-Periplasm e0-Extracellular
p1-Periplasm

Aerobic Glucose MM Glucose carbon source (presence of Oxygen)
Active reactions 0 417 578 1116
Objective value / Growth 0 0.477218 0.428449 0.414962
Anaerobic Glucose MM Glucose carbon source (absence of Oxygen)
Active reactions 594 413 564 979
Objective value / Growth 0.162608 0.16799 0.428449 0.173746
Aerobic Dextrin MM Glucose replace with Dextrin carbon source (presence of Oxygen)
Active reactions 0 0 573 1042
Objective value / Growth 0 0 0.428449 0.428449
Anaerobic Dextrin MM Glucose replace with Dextrin carbon source (absence of Oxygen)
Active reactions 522 0 569 934
Objective value / Growth 0.214225 0 0.428449 0.428449
Aerobic Glutamine MM Ammonia replace with Glutamine nitrogen source (presence of Oxygen)
Active reactions 0 416 563 1034
Objective value / Growth 0 1.11357 0.428449 0.428449
Anaerobic Glutamine MM Ammonia replace with Glutamine nitrogen source (absence of Oxygen)
Active reactions 537 413 566 982
Objective value / Growth 0.214225 0.675723 0.428449 0.428449
Aerobic Sulfate MM Hydrogen Sulfate removed (presence of Oxygen)
Active reactions 0 417 580 1148
Objective value / Growth 0 0.477218 0.428449 0.411395
Anaerobic Sulfate MM Hydrogen Sulfate removed (absence of Oxygen)
Active reactions 0 413 576 987
Objective value / Growth 0 0.16799 0.428449 0.172423
CMM — Compartmentalized Community Model MB — Mixed-Bag MM — Minimal Media (Details in supplementary S3)

Table 1. Individual and community models statistics.

Mutual Information Analysis of Isolate and Community models 12

The REMIA App was applied to each model isolate and community model, with upper bounds for all combinations of s

TIC SCVCIL NULTICITS 11 D250 (1) GIUCOSE (C62112006), (2) GIUtallNe (C511101v203); (3) DX (11 C6111005) 2011 ), (2) 14
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Ammonia (NH3), (5) Sulfate (SO77), (6) Hydrogen sulfate (H2S0,), and (7) Oxygen (Oz). Diverse responses were
observed in Fig. 7 for aerobic and anaerobic conditions and between the isolates and community models. Compound
combinations without information flow were removed.

Figure 7 reveals that both E. coli and B. theta consist of information flow between 0.544-2.122 bits and 0.669-1.936
bits, where {1,2,3,4,5,6} generates the maximum values for each member with containing two carbon sources, two nitrogen
sources, and two sulfur sources and {1,4,5,6} generates the minimum values for each member with one carbon source,
one nitrogen source, and two sulfur sources. B. theta exhibits greater information flow in anaerobic conditions with the
presence of 1-2 sources of carbon, nitrogen, and sulfur: e.g. {1,2,34,6}, {1,2,4,6}, {2,3,4,6}, {3,4,5,6}, {1,4,6}, {2,3,6},
and {3,4,6}. E. coli generally exhibits greater information flow otherwise, particularly with glutamine, which is consistent
with the biological role of the latter as an obligate anaerobe that has substantial limitations as an isolate. The presence of
sulfate in combination with carbon and nitrogen sources augments information flow in E. coli, while the absence of a sulfur,
carbon, or nitrogen source often results in zero information flow.

Almost every set of E2E inputs in Fig. 7 manifests in greater information flow in the community models compared with
single species, which supports the ecological synergy of these members. Information flow is even greater in mixed-bag
models than compartmentalized models, presumably because the latter is encumbered with transport exchanges between
compartments. This trend was observed in both aerobic conditions in Figure 8 and anaerobic conditions in Fig. 9. E.
coli further outperformed B. theta in all conditions except two anaerobic conditions {1,3,4,5,6} and {1,4,5,6}, which is
consistent with the ecological roles of each member [14]. Information flow in the absence of a carbon source is zero for B.
theta, low for E. coli, and highest for the community models, which further reveals circumstances that justify community
formation. The presence of glucose and dextrin manifested in the greatest information flow, followed by glucose exceeding
dextrin when deployed singularly, ceteris paribus. The presence of both glutamine and ammonia nitrogen sources similarly
manifested in greater information flow than either source individually, followed by glutamine exceeding ammonia. B. theta
does not exchange information in the absence of hydrogen sulfate, regardless of the presence of sulfate, which suggests
that B. theta may require additional protons for survival, while both isolates exhibit zero information flow when hydrogen
sulfate is present without sulfate. These results affirm the nutritional necessity of these mineral and energy sources, and
indicate that information flow generally follows B. theta < E. coli < CCM < MB.

Discussion

Biological cells leverage communication, both among themselves and with other cells, to conduct relatively complex cellular
functions and govern interactions and community dynamics. Understanding these understudied communication mechanisms
is therefore essential for understanding human health, ecological systems, and agricultural productivity, and ultimately for
rational engineering a range of cellular behaviors or stable communities. We devised a Mutual Information score (MI) to
quantify the information flow of a metabolic system and probe these communication mechanisms via a unique molecular
communication model that applies Shannon information theory. We exemplify MI with an idealized 2-member microbiome
community of E. coli and B. theta, where information flow was determined to be greater in community models than in
isolated members, consistent with the Shannon Information theory’s definition of information which scales proportionally
with the number of possible system states. The mixed-bag community framework furthermore exhibited greater information
flow than compartmentalized community models since this framework is not encumbered by transporters to exchange
compounds between compartments and may therefore represent a theoretical limit of a frictionless community metabolism.
The MI values of E. coli were also generally greater than those of B. theta — except for several anaerobic conditions — which
is consistent with the broader ecological habitable zone of E. coli. We further ingrained MI into KBase as an Application
(Run Fluz Mutual Information Analysis) that conveniently visualizes information flows for concise interpretation and
importantly streamlines usage of MI and broadens its accessibility to non-technical biologists. MI analyses identify the
combinations of nutrients that optimally trigger information flow, and may therefore be a valuable tool to reduce the
number of resource-intensive experiments to probe a given metabolic system. We envision that MI and the RFMIA App
will accelerate basic and applied discoveries in myriad biological fields. Future work will characterize larger microbial
communities and chart information flow as a function of member abundances to understand how competitive forces
influence information flow in community systems.

Supporting information

S1 Mathematical Models. Mutual Information Mathematical Models Details of the mathematical models are
in the Mutual_Information_MathematicalModels.pdf file.
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S2 Figures 7, 8, and 9.

S3 Table Minimal Media (MM) The table contains the compounds the minimal necessities for growth of the both
organisms. Details of the compound list are in file Btheta_Ecoli_minimal media.csv

165

166

167

S4 Figures 7, 8, and 9 bar chart values in excel file The values and the original formats for B_theta_E_Coli_BarCharts.xlsx
are in the Excel file sheets 1, 2, and 3, respectively.
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Fig 7. End-to-end (E2E) mutual information chart with respect to various input compound
combinations. E2E mutual information for the different combinations of seven compounds of individual E. coli, B. theta,
mixed-bag(MB), and compartmentalized community model (CCM), with respect to flux of uptaken and secreted
compounds and biomass. Compound combinations with zero bits of all four models are not presented. Corresponding bar
chart values are available in the supporting document S4.
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Fig 8. Aerobic E2E mutual information chart for different combinations of seven compounds. MI values of
E. coli, B. theta/iAH991V 2, mixed-bag (MB), and compartmentalized community model (CCM) with all the
combinations of seven compounds, with respect to E2E MC systems. MI combinations with zero bits are not presented.
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Fig 9. Anaerobic E2E mutual information values of all four models for seven compound combinations. A
chart describes the anaerobic E2E MI values of B. theta/iAH991V2, E. coli, mixed-bag (MB), and compartmentalized
community model (CCM) with all the combinations of seven compounds respectively, to E2E MC systems. MI
combinations with zero bits are not presented.
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