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Abstract
Microorganisms naturally form community ecosystems to improve fitness in diverse environments and conduct otherwise
intractable processes. Microbial communities are therefore central to biogeochemical cycling, human health, agricultural
productivity, and technologies as nuanced as nanotechnology-enabled devices; however, the combinatorial scaling of
exchanges with the environment that predicate community functions are experimentally untenable. Several computational
tools have been presented to capture these exchanges, yet, no attempt has been made to understand the total information
flow to a community from its environment. We therefore adapted a recently developed model for singular organisms, which
blends molecular communication and the Shannon Information theory to quantify information flow, to communities and
exemplify this expanded model on idealized communities: one of Escherichia coli (E. coli) and Pseudomonas fluorescens to
emulate an ecological community and the other of Bacteroides thetaiotaomicron (B. theta) and Kleb Ciella to emulate a
human microbiome interaction. Each of these sample communities exhibit critical syntrophy in certain environmental
conditions, which should be evident through our community mutual information model. We further explored alternative
frameworks for constructing community genome-scale metabolic models (GEMs) – mixed-bag and compartmentalized.
Our study revealed that information flow is greater through communities than isolated models, and that the mixed-bag
framework conducts greater information flow than the compartmentalized framework for community GEMs, presumably
because the latter is encumbered with transport reactions that are absent in the former. This community Mutual
Information model is furthermore wrapped as a KBase Application (Run Flux Mutual Information Analysis, RFMIA)
for optimum accessibility to biological investigators. We anticipate that this unique quantitative approach to consider
information flow through metabolic systems will accelerate both basic and applied discovery in diverse biological fields.

Author Summary

Author summary
Microorganisms frequently communicate information via information-bearing molecules, which must be fundamentally
understood to engineer biological cells that properly engage with their environments, such as the envisioned Internet
of Bio-NanoThings. The study of these molecular communications has employed information and communication
theory to analyze the exchanged information via chemical reactions and molecular transport. We introduce an
information- and communication-centric computational approach to estimate the information flow in biological cells
and its impacts on the behavior of single organisms and communities. This study complements our previous work
of cell metabolism by developing an end-to-end perspective of molecular communication based on enzyme-regulated
reactions. We explore the mutual information using Shannon information theory, measured in bits, between
influential nutrients and cellular growth rate. The developed RFMIA computational tool is deployed in the U.S.
Department of Energy’s Systems Biology Knowledgebase, where it quantitatively estimates information flow in
both organism and community metabolic networks and extends recent developments in computer communications
to explore and explain a new biology for the open-source community.

Introduction 1

Microorganisms naturally assemble into communities to diversify strengths and weakness and to conduct complex functions 2

such as biogeochemical cycling, intricate bioproduction, and digesting intractable nutrients. Cellular metabolism is the 3
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foundation of these transformative processes, where chemical reactions convert environmental substrates into energy 4

and biomass in a tightly regulated pipeline [1] (Fig. 1). These reactions are activated by the cell’s environment to 5

optimally survive, often meaning growth and reproduction [2]. Environmental perturbations may therefore be useful to 6

control cellular behaviors, although the limits of this approach and the communication mechanisms by which cells and 7

communities coordinate functions in response to environmental triggers remain opaque. The specific mediating molecules 8

(e.g. quorum sensing) and triggers for these communication mechanisms represent a large knowledge gap [3, 4] around 9

cellular communication. Community communications especially remain understudied [5], partly due to the difficulty in 10

recovering representative samples [6]; hence computational biology is an attractive alternative domain to study communities 11

without necessitating a complete experimental description of a system. Some computational models apply top-down 12

ecological principles to represent microbial communities while other models represent communities from the bottom-up 13

assembly of metabolic pathways and fundamental biochemistry [7]. Molecular communication (MC) in Fig. 1 is an ideal 14

blend of both approaches – while also leveraging mathematics, computer science, and chemical engineering – to fully 15

capture the multi-dimensional complexity of community interactions by deducing information flow from chemical exchanges. 16

We previously derived an MC abstraction of a single communication channel of interdependent inputs and outputs [8], 17

where information propagates from media into cellular metabolism and where we derived quantitative limits for this 18

information flow [9], and for a two molecular communication channels for each community [10]: one where regulatory 19

mechanisms depend upon combinations of extracellular compounds, and the other where cell metabolism depends on 20

growth and extracellular exchange. The application of information theory in these papers (illustrated in Fig. 2) expresses 21

the performance of both channels and examined the end-to-end (E2E) limits to molecular communication system, such as 22

exchange flux and biomass growth. 23

Herein, we expand our previously defined molecular communication model into a Mutual Information score (MI) that 24

is crafted to examine community systems. with different combinations of seven substrates for two human gut microbes 25

– an obligate anaerobe bacterium B. theta and an Archaea M. smithii, where the substrates were found to propagate 26

different amounts of information [?]. The MI score uniquely 1) characterizes cellular and inter-species molecule exchanges, 27

2) detects extracellular signatures – exchange fluxes and biomass growth – that indicate intra-cellular information flow, 28

and 3) generates data that can reveal community interactions and thereby minimize resource-intensive experiments to 29

elucidate community communications and their sensitivity to environmental perturbations. MI in Fig. 2 leverages Shannon 30

information theory [11,12] to quantify variability in metabolic information flow and steady-state FBA [13] to define an 31

upper limit of information flow from the given environment based on metabolic flux, biomass growth, and E2E (uptake, 32

secretion of metabolites and biomass). Shannon’s theory defines information as the details that distinguish a state of a 33

system from the space of possible system states, which is depicted in Fig. 3. The MI score is the uncertainty difference 34

between the uncertainty contained in the input molecule(s) and the conditional uncertainty of the channel output, and 35

thereby quantifies information change via each channel. We exemplify the MI score to understand an idealized microbiome 36

community of Escherichia coli (E. coli) and Bacteroides thetaiotaomicron (B. theta) that has a prominent role on our 37

adaptive immunity [14] and biotic health [15], and which exhibits a unique community synergy of B. theta only growing 38

in aerobic environments when coupled with E. coli [16]. We moreover compared the information differences between 39

two alternative frameworks for defining community GEMs: 1) the mixed-bag framework, where all member networks 40

are pooled into a single network; and (2) the compartmentalized framework, where each member network is segregated 41

into a designated compartment that can exchange with a common environment compartment. We consistently observe a 42

higher MI score in communities, especially the mixed-bag abstraction, relative to isolates, which is qualitatively expected 43

yet quantitatively invaluable when comparing different community designs or ecological factors that govern community 44

formation. The MI score therefore has far-reaching implications in diverse biological fields and should accelerate engineering 45

efforts of controlling microbiomes or synthesizing communities. The MI score is available as a point-and-click Application 46

(Run Flux Mutual Information Analysis, RFMIA in the U.S. Department of Energy’s Systems Biology Knowledgebase 47

(KBase) [17] where genomes can be constructed into metabolic networks and ultimately merged community models [18] 48

(See the example KBase Narrative: https://kbase.us/n/40576/330/). 49

Materials and Methods 50

Mutual Information (I) is defined as the input uncertainty minus the output uncertainty that depends on the inputs: I = 51

H(inputs)−H(inputs, outputs). The MI was applied to explore how much environmental perturbations (inputs = {ci}N
i=1, 52

as the concentration of all N examined substrates) can control metabolic flux and biomass growth (outputs = ({Fe}E
e=1 , Gr), 53

as all exchange fluxes and the biomass growth flux [10], respectively). The MI for the overall E2E channel quantifies 54

information flow that can be perceived from the environment through exchange fluxes and biomass growth 55
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Fig 1. Molecular communication systems send and receive information through chemical reactions.
Information flows from the cell’s environment in the form of input signals such as signaling molecules, metabolites,
environmental stress sources like temperature, and pH. Output information flows from the metabolic state and how
information of the internal cell state can be perceived from the outside environment in the form of growth of a cell,
proteins and apoptosis of a cell.

Upper Bound to the Steady-State Mutual Information – UBS-sMI 56

FBA is employed to computationally evaluate (1) and (3), which yields the profile of activated reactions in a given the 57

environment and enables estimating the state {r∗
i }

M
i=1 that maximizes biomass production and the associated fluxes i.e., 58

{U∗
i }

t
i=1 , {S∗

i }
j
i=1 , (Gr)∗. Parsimonious FBA (pFBA) [19] is furthermore applied to reduce the space of optimal solutions 59

to those with the lowest total flux, thereby imposing a secondary optimization of metabolic efficiency while improving 60

reproducibility of the predicted flux profiles. The upper bound for MI of metabolic flux [9]: 61

I({ci}N
i=1 ; {r∗

i }
M
i=1) = H({ci}N

i=1)−H({ci}N
i=1 | {r

∗
i }

M
i=1) (1)

where {ci}i=1 is the initial concentrations. The relations between MI and its upper bound 62

I({ci}N
i=1 ; {r∗

i }
M
i=1) ≥ I({ci}N

i=1 ; {ri}M
i=1) . (2)

and MI of biomass growth and its upper bound 63

I({r∗
i }

M
i=1 ; {U∗

t }
T
t=1 ,

{
S∗

j

}J

j=1 , Gr∗) . (3)

are analogously derived. The upper bound of the E2E steady-state mutual information I({ci}N
i=1 ; {U∗

t }
T
t=1 ,

{
S∗

j

}J

j=1 , Gr∗) 64

is solved by substituting {ri}M
i=1 with {ci}N

i=1 and then integrating. The mathematical formulation is presented in 65

supplementary S1. 66
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Reconstruction of Community Models 67

We sourced published GEMs for E. coli/iML1515 [20] and B. theta/iAH991 [21] that offer the most complete and 68

experimentally-validated reconstructions to-date for these organisms. These member GEMs were assembled to a mixed-bag 69

community model – the pooled amalgamation of all reactions – and as a compartmentalized community model – each GEM 70

is assigned a unique compartment and all compartments exchange with a common extracellular compartment – which 71

are contrasted in Fig. 4. These community model frameworks are functionally identical in FBA, with the difference that 72

transport reactions are not present in mixed-bag community models since they lack compartments. The Merge metabolic 73

models into community model tool in KBase constructed each version of community model for the two-member 74

community. 75

Mutual Information score 76

The MI is a metric in units of bits for the metabolic ability to process information from a given environment, where the 77

activity of state-changing chemical reactions are either activated (1) or inactive (0) depending on the media. The MI score 78

is proportional with information flow between the cell metabolism and its environment. 79

80

Results 81

Integration of the Mutual Information Approach in KBase 82

The RFMIA KBase Application in Fig. 6 executes the MI score, where the user-friendly workflow in Fig. 5 accepts inputs 83

of the models, media components, a mmol of carbon consumption limit, and model objectives and returns tables and 84

charts that succinctly communicate information flows as well as rank compounds based on their influence on information 85

flow. Steps 1–5 in Fig. 5a,b explain the backend processes of the RFMIA KBase App. 86

Integration of Published E. coli and B. theta Models and Combination into Community 87

models 88

The FBA simulation results, GEM metadata, and growth rates for aerobic and anaerobic conditions among each of the 89

seven input nutrients are tabulated in Table 1 (corollary content is available in S3 and Narrative https://kbase.us/ 90

n/81575/184/). The published individual models were subtly curated with missing pathways that are necessary for our 91

simulation: E. coli was curated to produce dextrin from starch and sucrose and B. theta/iAH991V2 was curated by 92

adding choline exchange and transporter reactions and removing sink-chols c0 and sink-hpyr c0 sink reactions (the final 93

models are available in Narrative https://kbase.us/n/40576/330/). We constrain the total number of carbon atoms 94

that a model can consume – 60 mmol C
gDW ∗hour by default, which corresponds to 10 mmol glucose

gDW ∗hour when glucose is the only carbon 95

source – to limit simulated growth to a reasonable value even when several carbon sources are simultaneously utilized. 96

The ecological role of B. theta as an aerotolerant – can survive but not grow in aerobic environments [22] – digester of 97

polysaccharides [23] was captured by manually setting MI and biomass growth in its GEM to zero when the isolated 98

model was simulated in an aerobic environment, while leaving the GEM unconstrained in a community. 99

Several noteworthy observations are available from the various models in the various media. First, the community 100

models, especially the mixed-bag model, generally exhibited higher growth relative to the individual models, although the 101

highest for growth was observed with E. coli in aerobic conditions. Second, the community models successfully grew on 102

dextrin despite that E. coli failed to grow as an isolate, which may be explained by E. coli’s inability metabolize complex 103

polysaccharides [24] but this is not completely understood [25]. Third, the community models grew on glutamine (a nitrogen 104

source) equivalently to glucose and dextrin (carbon sources), however, E. coli nearly doubled and tripled the community 105

growth rate in anaerobic and aerobic conditions on glutamine relative to the carbon sources, respectively. Finally, the 106

community models grew equivalently on sulfate as glucose (the mixed-bag model grew slightly more, while B. theta failed 107

to grow and E. coli grew slightly more than the community models. The first two observations demonstrate community 108

synergy that may justify its stable formation among these members. The latter two observations reveal conditions where E. 109

coli self-sacrifices to join the community, since it could grow more as an independent isolate, notwithstanding that sulfur 110

metabolism in bacteria is poorly understood [26]. 111
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0

Model Statistics
Single Community

B. theta / 
iAH991 E.coli / iML1515 MB CCM

Original Model Description

Number reactions 1246 2379 3166 3625

Number compounds 1179 1878 2398 2944

Genes 993 1515 2508 2508

Number compartments

2 3 3 5

c0-Cytosol
e0-Extracellular

c0-Cytosol
e0-Extracellular
p0-Periplasm

c0-Cytosol
e0-Extracellular
p1-Periplasm

c0-Cytosol
c1-E. coli
c2-B. theta
e0-Extracellular
p1-Periplasm

Aerobic Glucose MM Glucose carbon source (presence of Oxygen)

Active reactions 0 417 578 1116

Objective value / Growth 0 0.477218 0.428449 0.414962

Anaerobic Glucose MM Glucose carbon source (absence of Oxygen)

Active reactions 594 413 564 979

Objective value / Growth 0.162608 0.16799 0.428449 0.173746

Aerobic Dextrin MM Glucose replace with Dextrin carbon source (presence of Oxygen)

Active reactions 0 0 573 1042

Objective value / Growth 0 0 0.428449 0.428449

Anaerobic Dextrin MM Glucose replace with Dextrin carbon source (absence of Oxygen)

Active reactions 522 0 569 934

Objective value / Growth 0.214225 0 0.428449 0.428449

Aerobic Glutamine MM Ammonia replace with Glutamine nitrogen source (presence of Oxygen)

Active reactions 0 416 563 1034

Objective value / Growth 0 1.11357 0.428449 0.428449

Anaerobic Glutamine MM Ammonia replace with Glutamine nitrogen source (absence of Oxygen)

Active reactions 537 413 566 982

Objective value / Growth 0.214225 0.675723 0.428449 0.428449

Aerobic Sulfate MM Hydrogen Sulfate removed (presence of Oxygen)

Active reactions 0 417 580 1148

Objective value / Growth 0 0.477218 0.428449 0.411395

Anaerobic Sulfate MM Hydrogen Sulfate removed (absence of Oxygen)

Active reactions 0 413 576 987

Objective value / Growth 0 0.16799 0.428449 0.172423

CMM – Compartmentalized Community Model    MB – Mixed-Bag        MM – Minimal Media (Details in supplementary S3)

Table 1. Individual and community models statistics.

Mutual Information Analysis of Isolate and Community models 112

The RFMIA App was applied to each model isolate and community model, with upper bounds for all combinations of 113

the seven nutrients in E2E: (1) Glucose (C6H12O6), (2) Glutamine (C5H10N2O3), (3) Dextrin (H(C6H10O5)xOH), (4) 114
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Ammonia (NH3), (5) Sulfate (SO2−
4 ), (6) Hydrogen sulfate (H2SO4), and (7) Oxygen (O2). Diverse responses were 115

observed in Fig. 7 for aerobic and anaerobic conditions and between the isolates and community models. Compound 116

combinations without information flow were removed. 117

Figure 7 reveals that both E. coli and B. theta consist of information flow between 0.544–2.122 bits and 0.669–1.936 118

bits, where {1,2,3,4,5,6} generates the maximum values for each member with containing two carbon sources, two nitrogen 119

sources, and two sulfur sources and {1,4,5,6} generates the minimum values for each member with one carbon source, 120

one nitrogen source, and two sulfur sources. B. theta exhibits greater information flow in anaerobic conditions with the 121

presence of 1-2 sources of carbon, nitrogen, and sulfur: e.g. {1,2,3,4,6}, {1,2,4,6}, {2,3,4,6}, {3,4,5,6}, {1,4,6}, {2,3,6}, 122

and {3,4,6}. E. coli generally exhibits greater information flow otherwise, particularly with glutamine, which is consistent 123

with the biological role of the latter as an obligate anaerobe that has substantial limitations as an isolate. The presence of 124

sulfate in combination with carbon and nitrogen sources augments information flow in E. coli, while the absence of a sulfur, 125

carbon, or nitrogen source often results in zero information flow. 126

Almost every set of E2E inputs in Fig. 7 manifests in greater information flow in the community models compared with 127

single species, which supports the ecological synergy of these members. Information flow is even greater in mixed-bag 128

models than compartmentalized models, presumably because the latter is encumbered with transport exchanges between 129

compartments. This trend was observed in both aerobic conditions in Figure 8 and anaerobic conditions in Fig. 9. E. 130

coli further outperformed B. theta in all conditions except two anaerobic conditions {1,3,4,5,6} and {1,4,5,6}, which is 131

consistent with the ecological roles of each member [14]. Information flow in the absence of a carbon source is zero for B. 132

theta, low for E. coli, and highest for the community models, which further reveals circumstances that justify community 133

formation. The presence of glucose and dextrin manifested in the greatest information flow, followed by glucose exceeding 134

dextrin when deployed singularly, ceteris paribus. The presence of both glutamine and ammonia nitrogen sources similarly 135

manifested in greater information flow than either source individually, followed by glutamine exceeding ammonia. B. theta 136

does not exchange information in the absence of hydrogen sulfate, regardless of the presence of sulfate, which suggests 137

that B. theta may require additional protons for survival, while both isolates exhibit zero information flow when hydrogen 138

sulfate is present without sulfate. These results affirm the nutritional necessity of these mineral and energy sources, and 139

indicate that information flow generally follows B. theta < E. coli < CCM < MB. 140

Discussion 141

Biological cells leverage communication, both among themselves and with other cells, to conduct relatively complex cellular 142

functions and govern interactions and community dynamics. Understanding these understudied communication mechanisms 143

is therefore essential for understanding human health, ecological systems, and agricultural productivity, and ultimately for 144

rational engineering a range of cellular behaviors or stable communities. We devised a Mutual Information score (MI) to 145

quantify the information flow of a metabolic system and probe these communication mechanisms via a unique molecular 146

communication model that applies Shannon information theory. We exemplify MI with an idealized 2-member microbiome 147

community of E. coli and B. theta, where information flow was determined to be greater in community models than in 148

isolated members, consistent with the Shannon Information theory’s definition of information which scales proportionally 149

with the number of possible system states. The mixed-bag community framework furthermore exhibited greater information 150

flow than compartmentalized community models since this framework is not encumbered by transporters to exchange 151

compounds between compartments and may therefore represent a theoretical limit of a frictionless community metabolism. 152

The MI values of E. coli were also generally greater than those of B. theta – except for several anaerobic conditions – which 153

is consistent with the broader ecological habitable zone of E. coli. We further ingrained MI into KBase as an Application 154

(Run Flux Mutual Information Analysis) that conveniently visualizes information flows for concise interpretation and 155

importantly streamlines usage of MI and broadens its accessibility to non-technical biologists. MI analyses identify the 156

combinations of nutrients that optimally trigger information flow, and may therefore be a valuable tool to reduce the 157

number of resource-intensive experiments to probe a given metabolic system. We envision that MI and the RFMIA App 158

will accelerate basic and applied discoveries in myriad biological fields. Future work will characterize larger microbial 159

communities and chart information flow as a function of member abundances to understand how competitive forces 160

influence information flow in community systems. 161

Supporting information 162

S1 Mathematical Models. Mutual Information Mathematical Models Details of the mathematical models are 163

in the Mutual Information MathematicalModels.pdf file. 164
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S2 Figures 7, 8, and 9. 165

S3 Table Minimal Media (MM) The table contains the compounds the minimal necessities for growth of the both 166

organisms. Details of the compound list are in file Btheta Ecoli minimal media.csv 167

S4 Figures 7, 8, and 9 bar chart values in excel file The values and the original formats for B theta E Coli BarCharts.xlsx168

are in the Excel file sheets 1, 2, and 3, respectively. 169

Acknowledgments 170

We thank the KBase developers team in Chris Henry’s lab at Argonne National Laboratory (ANL) for their active support 171

throughout the development of this research. Also, special thanks to Dr. Gail W. Pieper at ANL for helpful discussions 172

and comments on revisions. This work was financially supported by the Molecular and Biochemical Telecommunications 173

(MBiTe) Lab at the Department of Computer Science and Engineering, University of Nebraska - Lincoln. This work was 174

supported by the US National Science Foundation through grant MCB-1449014, EPSCoR EPS-1004094, NSF CCF-1816969, 175

and the National Institutes of Health (NIH) through grant 1-P20-GM113126-01. The material was based in part on work 176

supported by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357. 177

References
1. E. Gonçalves, J. Bucher, A. Ryll, J. Niklas, K. Mauch, S. Klamt, M. Rocha, and J. Saez-Rodriguez, “Bridging the

layers: Towards integration of signal transduction, regulation and metabolism into mathematical models,” 2013.

2. C. M. Metallo and M. G. Vander Heiden, “Understanding Metabolic Regulation and Its Influence on Cell Physiology,”
2 2013.

3. R. E. Antwis, S. M. Griffiths, X. A. Harrison, P. Aranega-Bou, A. Arce, A. S. Bettridge, F. L. Brailsford, A. de Menezes,
A. Devaynes, K. M. Forbes, E. L. Fry, I. Goodhead, E. Haskell, C. Heys, C. James, S. R. Johnston, G. R. Lewis,
Z. Lewis, M. C. Macey, A. McCarthy, J. E. McDonald, N. L. Mejia-Florez, D. O’Brien, C. Orland, M. Pautasso,
W. D. Reid, H. A. Robinson, K. Wilson, and W. J. Sutherland, “Fifty important research questions in microbial
ecology,” 5 2017.

4. M. Rosenberg, N. F. Azevedo, and A. Ivask, “Propidium iodide staining underestimates viability of adherent bacterial
cells,” Scientific Reports, vol. 9, no. 1, pp. 1–12, 2019.

5. S. Blasche, Y. Kim, A. P. Oliveira, and K. R. Patil, “Model microbial communities for ecosystems biology,” 12 2017.

6. M. C. Tsilimigras and A. A. Fodor, “Compositional data analysis of the microbiome: fundamentals, tools, and
challenges,” 5 2016.

7. J. P. Faria, T. Khazaei, J. Edirisinghe, P. B. Weisenhorn, S. Seaver, N. Conrad, N. Harris, M. DeJongh, and C. S.
Henry, “Constructing and analyzing metabolic flux models of microbial communities,” 2016.

8. Z. Sakkaff, A. P. Freiburger, J. L. Catlett, M. Cashman, A. Immaneni, N. R. Buan, M. B. Cohen, C. Henry, and
M. Pierobon, “A Molecular Communication model for cellular metabolism,” bioRxiv, 2023.

9. M. Pierobon, Z. Sakkaff, J. L. Catlett, and N. R. Buan, “Mutual information upper bound of molecular communication
based on cell metabolism,” in IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC,
vol. 2016-August, Institute of Electrical and Electronics Engineers Inc., 8 2016.

10. Z. Sakkaf, J. L. Catlett, M. Cashman, M. Pierobon, N. R. Buan, M. B. Cohen, and C. A. Kelley, “End-to-end
molecular communication channels in cell metabolism: An information theoretic study,” in Proceedings of the 4th
ACM International Conference on Nanoscale Computing and Communication, NanoCom 2017, Association for
Computing Machinery, Inc, 9 2017.

11. A. Rhee, R. Cheong, and A. Levchenko, “The application of information theory to biochemical signaling systems,”
Physical Biology, vol. 9, 8 2012.

August 24, 2023 8/16

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554558doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554558


12. T. D. Schneider, “The founder of information theory used biology to formulate the channel capacity,” IEEE
ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2006.

13. J. D. Orth, I. Thiele, and B. O. Palsson, “What is flux balance analysis?,” Nature Biotechnology, vol. 28, no. 3,
pp. 245–248, 2010.

14. T. Conway and P. S. Cohen, “ Commensal and Pathogenic Escherichia coli Metabolism in the Gut ,” Microbiology
Spectrum, vol. 3, 6 2015.

15. R. Krajmalnik-Brown, Z. E. Ilhan, D. W. Kang, and J. K. DiBaise, “Effects of gut microbes on nutrient absorption
and energy regulation,” 4 2012.

16. T. Khazaei, R. L. Williams, S. R. Bogatyrev, J. C. Doyle, C. S. Henry, and R. F. Ismagilov, “Metabolic multistability
and hysteresis in a model aerobe-anaerobe microbiome community,” Science Advances, vol. 6, no. 33, 2020.

17. A. P. Arkin, R. W. Cottingham, C. S. Henry, N. L. Harris, R. L. Stevens, S. Maslov, P. Dehal, D. Ware, F. Perez,
S. Canon, M. W. Sneddon, M. L. Henderson, W. J. Riehl, D. Murphy-Olson, S. Y. Chan, R. T. Kamimura, S. Kumari,
M. M. Drake, T. S. Brettin, E. M. Glass, D. Chivian, D. Gunter, D. J. Weston, B. H. Allen, J. Baumohl, A. A. Best,
B. Bowen, S. E. Brenner, C. C. Bun, J. M. Chandonia, J. M. Chia, R. Colasanti, N. Conrad, J. J. Davis, B. H.
Davison, M. Dejongh, S. Devoid, E. Dietrich, I. Dubchak, J. N. Edirisinghe, G. Fang, J. P. Faria, P. M. Frybarger,
W. Gerlach, M. Gerstein, A. Greiner, J. Gurtowski, H. L. Haun, F. He, R. Jain, M. P. Joachimiak, K. P. Keegan,
S. Kondo, V. Kumar, M. L. Land, F. Meyer, M. Mills, P. S. Novichkov, T. Oh, G. J. Olsen, R. Olson, B. Parrello,
S. Pasternak, E. Pearson, S. S. Poon, G. A. Price, S. Ramakrishnan, P. Ranjan, P. C. Ronald, M. C. Schatz, S. M.
Seaver, M. Shukla, R. A. Sutormin, M. H. Syed, J. Thomason, N. L. Tintle, D. Wang, F. Xia, H. Yoo, S. Yoo, and
D. Yu, “KBase: The United States department of energy systems biology knowledgebase,” Nature Biotechnology,
vol. 36, no. 7, pp. 566–569, 2018.

18. C. S. Henry, H. C. Bernstein, P. Weisenhorn, R. C. Taylor, J. Y. Lee, J. Zucker, and H. S. Song, “Microbial Community
Metabolic Modeling: A Community Data-Driven Network Reconstruction,” Journal of Cellular Physiology, vol. 231,
no. 11, pp. 2339–2345, 2016.

19. N. E. Lewis, K. K. Hixson, T. M. Conrad, J. A. Lerman, P. Charusanti, A. D. Polpitiya, J. N. Adkins, G. Schramm,
S. O. Purvine, D. Lopez-Ferrer, K. K. Weitz, R. Eils, R. König, R. D. Smith, and B. Palsson, “Omic data from
evolved E. coli are consistent with computed optimal growth from genome-scale models,” Molecular Systems Biology,
vol. 6, 2010.

20. J. M. Monk, C. J. Lloyd, E. Brunk, N. Mih, A. Sastry, Z. King, R. Takeuchi, W. Nomura, Z. Zhang, H. Mori, A. M.
Feist, and B. O. Palsson, “iML1515 , a knowledgebase that computes E . coli traits,” Nature Biotechnology, vol. 35,
no. 10, pp. 8–12, 2017.

21. A. Heinken, S. Sahoo, R. M. T. Fleming, and I. Thiele, “Systems-level characterization of a host-microbe metabolic
symbiosis in the mammalian gut,” Gut Microbes, vol. 4, no. 1, pp. 28–40, 2013.

22. H. M. Wexler, “Bacteroides: The good, the bad, and the nitty-gritty,” 10 2007.

23. S. Mishra and J. A. Imlay, “An anaerobic bacterium, Bacteroides thetaiotaomicron, uses a consortium of enzymes to
scavenge hydrogen peroxide,” Molecular Microbiology, vol. 90, pp. 1356–1371, 12 2013.

24. L. C. Hoskins, M. Agustines, W. B. Mckee, E. T. Boulding, M. Krians, and G. Niedermeyer, “Mucin Degradation in
Human Colon Ecosystems Isolation and Properties of Fecal Strains that Degrade ABH Blood Group Antigens and
Oligosaccharides from Mucin Glycoproteins,” tech. rep., 1985.

25. S. Sabri, L. K. Nielsen, and C. E. Vickers, “Molecular control of sucrose utilization in Escherichia coli W, an efficient
sucrose-utilizing strain,” Applied and Environmental Microbiology, vol. 79, pp. 478–487, 1 2013.

26. A. Sekowska, H.-F. Kung, and A. Danchin, “Sulfur Metabolism in Escherichia coli and Related Bacteria: Facts and
Fiction JMMB Review,” Tech. Rep. 2, 2000.

August 24, 2023 9/16

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554558doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554558


ZS 2016

Cell Metabolic State

Biomass (Growth)

Information-bearing 
molecules

Input Information

Regulation of cell metabolism

Biomass	flux
Intracellular	flux

Biological	Model
Molecular	Communication	(MC)		Abstraction

Enzyme	
Expression	
Regulation	

Channel

Enzyme Expression 
Regulation 

End-to-end	(Uptake,	secretion,	biomass)

…

Input

…

c1
c2
c3

Concentration 1
Concentration 2
Concentration 3

Chemical compound 1
Chemical compound 2
Chemical compound 3
Chemical compound 4

[c1…N]

J1…N

Transmitted Signal
{𝒄𝟏,𝒄𝟐. , . . . ,𝒄𝑵 }

Metabolic
Reactions

Metabolic 
Reactions
Channel

Biological Cell

r1=1

r3=1

r2=1r4=1 rM=0
r7=1

r8=1
rN=1

S1…JBiomass Growth
/ No Growth

Output

r5=0

r6 =0

U1…T

Received Signal
{𝑼𝟏…𝑼𝑻,𝑺𝟏…𝑺𝑱,𝑮𝒓}

r1=1

r3=1

r2=1
r4=1

r5=0

rM=0
r7=1

r8=1
rN=1

Received Signal

Transmitted Signal                                        
{𝒓𝟏,𝒓𝟐., . . . ,𝒓𝑴 }

r6 =0

Uptake,
Secretion,
Biomass

Enzyme 
Expression 
Regulation 

Cell Metabolic State Metabolic 
Reactions

Output Information

Input Information
Uptake,

Secretion,
Biomass

Output Information

Information-bearing 
molecules

Input Information
Uptake, Secretion, 

Biomass

Output Information

c0

Gene

c0

Environment (e0)

Cell Species A 

Cell Species B

(a)

(b)

(c)

Fig 2. Overall graphical representation of the molecular communication abstraction of cell metabolism.
(a) Interaction of two different cell species A, and B with the presence of various compounds in the environment and the
flow of information. (b) The cell takes certain concentrations of chemical compounds into the cell metabolism, where the
variations in these concentrations cause state changes in the cell’s metabolic network. Intracellular flux represents the cells
response to the chemical composition of the cell’s environment; Biomass flux captures variations in the growth rate of the
cell in response to environmental changes; and End-to-End describes variations in the uptake and secretion of chemical
compounds and the biomass (cell growth), which can be measured when we consider the cell metabolic processes from the
perspective of the environment. (c) Mapping MC abstraction with biological model.
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Fig 4. Details of interspecies models in this study. Three different formalisms we use to study information flow
through metabolic systems. Left-hand models show the environmental interaction of individual species. Middle MB shows
individual species blended into a single new species. Right hand CCM, where individual species tightly interact with each
other while interacting with the environment. Species 1 are represented in purple, species 2 in green, and anything
common in both organisms in orange. Filled and open circles represent extracellular and intracellular metabolites,
respectively; solid boxes mean that compartments outside of which the quasi-steady state assumption may not hold, and
dashed boxes indicate compartments outside of which the steady-state assumption continues to hold. As stated, the
communities did not have equal abundances, and that situation may lead to inaccurate conclusions about any interactions.
Hence, the relative abundance values allow one to formulate the biomass composition for the entire community.

August 24, 2023 12/16

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 24, 2023. ; https://doi.org/10.1101/2023.08.23.554558doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.23.554558


Reactions IDs
rxn00001 rxn0002 rxn0003 … rxn_M

FBA’s

base 1 1 0 … 1
m1 0 1 1 … 1
m2 0 1 1 … 1
… … … … … …

m_N 0 1 1 … 1

Run
RFMIA Input Objects

FBA model

Model compounds

Absolute media

Parameters

Selected items

Max Carbon Uptake

Mode of operation
�Intracellular fluxes
�Biomass flux
�Uptake, biomass & secretion

1

2

0

2

4

6

A B C DVa
lu

es
 o

f L
ab

el
s

FBA groups

FBA groups based on mode of operation

Mode of operation Number of FBA Members

3

Mathematical Models
Mode of operation

� Intracellular fluxes (Equation 4)
� Biomass flux (Equation 6)
� Uptake, biomass & secretion (UBS Equation 3)

4

Internal processing steps w
hile the R

FM
IA app runs

Mutual Information for various chemical compound combinations Object
Input Chemical Compound Combination Mutual Information (in Bits)

cpd00027_e0,cpd00053_e0,cpd11658_e0 3.43861568126

cpd00027_e0,cpd00053_e0 2.74795802288

cpd00027_e0 2.4612916913

cpd00053_e0 3.43861568126

5 Output Object: Report

0
0.5

1
1.5

2
2.5

3
3.5

cpd0002
7_e

0,cpd000…

cpd0002
7_e

0,cpd000…

cpd0002
7_e

0

cpd0005
3_e

0

M
I

Compound Combination

Mutual Information (in Bits)

(a)

(b)
Uptake, biomass, & secretionIntracellular flux

Intracellular 
metabolic 
reactions

[c1…N]
Input

Biomass flux

Biomass

[c1…N]
Input

Biomass

Uptake

Secretion

[c1…N]
Input

Mode of operation

(E2E)

Fig 5. General RFMIA tool pipeline. (a) 1-5 steps involved: 1-input to the tool, 2-internal processing of reaction
table with FBAs, 3-FBA groups with MI values, 4-MI math models and calculations, and 5-MI table and bar chart. (b) A
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(a)

(b)

Fig 6. RFMIA online user interface available in KBase [?] as point and click apps. (a) Describes the user
interface containing narrative description, RFMIA tool features, input data, and the list of applications. (b) RFMIA run
results in tabular and bar chart formats.
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Fig 7. End-to-end (E2E) mutual information chart with respect to various input compound
combinations. E2E mutual information for the different combinations of seven compounds of individual E. coli, B. theta,
mixed-bag(MB), and compartmentalized community model (CCM), with respect to flux of uptaken and secreted
compounds and biomass. Compound combinations with zero bits of all four models are not presented. Corresponding bar
chart values are available in the supporting document S4.
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Fig 8. Aerobic E2E mutual information chart for different combinations of seven compounds. MI values of
E. coli, B. theta/iAH991V2, mixed-bag (MB), and compartmentalized community model (CCM) with all the
combinations of seven compounds, with respect to E2E MC systems. MI combinations with zero bits are not presented.
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Fig 9. Anaerobic E2E mutual information values of all four models for seven compound combinations. A
chart describes the anaerobic E2E MI values of B. theta/iAH991V2, E. coli, mixed-bag (MB), and compartmentalized
community model (CCM) with all the combinations of seven compounds respectively, to E2E MC systems. MI
combinations with zero bits are not presented.
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