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Abstract—The optimization of information transfer through
molecule diffusion and chemical reactions is one of the leading
research directions in Molecular Communication (MC) theory.
The highly nonlinear nature of the processes underlying these
channels poses challenges in adopting analytical approaches
for their information-theoretic modeling and analysis. In this
paper, a novel iterative methodology is proposed to numerically
estimate achievable information rates. Based on the Nelder-Mead
optimization, this methodology does not necessitate analytical for-
mulations of MC components and their stochastic behavior, and,
when applied to well-known scenarios, it demonstrates consistent
results with theoretical bounds and superior performance to prior
literature. A numerical example that abstracts communications
between genetically engineered cells via simulation is presented
and discussed in light of possible future applications to support
the design and engineering of realistic MC systems.

Index Terms—Molecular Communication, Chemical Reaction
Channel, Diffusion Channel, Iterative Algorithm, Mutual Infor-
mation, Achievable Information Rate

I. INTRODUCTION

Molecular Communication (MC) is a field of research

that focuses on the study of information propagation through

molecules and chemical reactions, including natural communi-

cations in biology, from the perspectives of information theory

and communication engineering [1], [2]. Due to their system-

evolution-dependent stochastic nature, most of the chemical

and biological MC channels exhibit highly nonlinear input-

output behavior [3]. Analytical formulas to estimate MC

channel capacity can be found only in very specific cases

or under strong assumptions, and because of the complex

characteristics of such channels, most realistic chemical and

biological MC channels do not yet have even a full statistical

characterization in current literature [1]. For this reason, unlike

quintessential communication channels, defining the capacity

of MC channels is non-trivial.

A number of papers in the literature try to address the

issue of finding ideal conditions to transfer reliable infor-

mation in MC systems. The authors of [4] build an MC

system where the channel is approximated as slotted binary

and evaluate the achievable capacity. In [5], an information-

theoretical approach for estimating the capacity of a molecular

channel between two nanomachines is developed. The impact

of relay/cooperative nanomachines on capacity for a diffusive

mobile MC system is studied in [6]. The authors of [7] derive

a closed-form expression for the capacity of a noisy MC

channel, while in [8] enzymatic reaction cycles are exploited

to improve the upper bound of Mutual Information (MI) for a

diffusion-based communication system. In [9], an optimization

of capacity bounds is performed for stationary and ergodic

discrete-time channels with memory. In [10], the authors

study the performance of the MC system in terms of reliable

information exchange for the Poisson channel with finite-state

memory. Another paper [11] presents the evaluation of the

channel capacity for an MC system model that considers both

the diffusion-based channel and the ligand-based receiver.

In MC the practical transmission of information is realized

by means of different modulation schemes according to the

physical/chemical property of the molecules that is being

changed, i.e., concentration, type, timing, and space [12]. The

most common form is concentration-based modulation, where

the information is encoded in the number of particles released

at the transmitter. For this type of modulation, a constraint

on the maximum number of released particles arises in a

natural way. Under this constraint, from information theory we

know that the capacity-achieving input distribution is discrete,

and can be efficiently obtained by implementing a numerical

approach based on the Blahut-Arimoto (BA) algorithm [13]. In

the context of a biochemical scenario, a variant of the BA has

been proposed in [14] with application to cellular signaling.

The latter is based on an a-priori estimation of the equivocation

probability from the data, where analytical expression of the

probability mass function is obtained using logistic regression.

As in [14], in the present work we develop a methodology

to address the problem of estimating the maximum reliable in-

formation (i.e., the MI) that can be transmitted over a chemical

MC channel with unknown statistical model. This consists of

a numerical approach where a relatively small amount of data

(simulated or experimental) is exploited to build the estimate

of the probability distributions of the transmitted and received

messages, which in turn are utilized to estimate the MI. Our

methodology is validated in this paper for the case of a

discrete-time amplitude-constrained Additive White Gaussian

Noise (AWGN) channel, and compared to known results from

the literature [15]. We then employ the proposed methodology

to maximize the MI in a simulation-based scenario abstracting

an MC channel between two genetically engineered cells [3].
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Our method shows that the same channel could achieve better

performance in terms of information transfer by choosing

a particular input distribution, and quantifies this achievable

performance in terms of exchanged bits of information.

This paper is organized as follows. In Sec. II we detail

the model of an MC channel with chemical reactions and

diffusion, which abstracts information propagation in biology,

and we motivate and detail our proposed methodology based

on the Nelder-Mead iterative algorithm, then validated for the

case of AWGN channel and compared to existing literature.

In Sec. III we present and discuss the results of our algorithm

applied to a particular simulation-based case study of chemical

MC channel. Finally, in Sec. IV we conclude the paper.

II. SYSTEM MODEL AND METHODOLOGY

In this section, we detail the proposed iterative algorithm

to optimize reliable information transfer through chemical

channels in an MC system, with reference to Fig. 1.

A. A Chemical Molecular Communication Channel

In the scope of this paper, we consider a molecular channel

based on chemical reactions and free diffusion in a fluid envi-

ronment, which abstracts the basics of molecular information

propagation through/among biological cells [16]. In particular,

the molecules of reacting chemical species are confined into

multiple volumes (cells), e.g., Ω1 and Ω2 in Fig. 1, and some

of these species can cross the boundaries (cell membrane)

of these volumes and diffuse between them. Inside each of

these volumes, we assume that the molecules are well-stirred,

resulting in no bulk diffusion of any of the chemical species.

Without loss of generality, we assume that the Transmitter

is emitting into the first volume of the channel a number

NTx(t) of information-bearing molecules as a function of

the time t that encodes a Transmitted information Message

X . Once emitted, the molecules are in general involved into

chains of chemical Reactions (cell pathways), each propagat-

ing the information message X from a number of reactant

species to a number of product species, eventually crossing

the volume boundaries and Diffusing into other volumes, or

being detected at the Receiver, which decodes the Received

information Message Y from the number NRx(t) of the

molecules as function of the time t.
In agreement with [17], for a time interval τ sufficiently

small as to consider that chemical reactions are statistically

independent from each other, a chemical Reaction is mathe-

matically expressed in this paper as follows:

Ni(t+ τ) = Ni(t) +
M
∑

j=1

νjiPj (aj(N(t)), τ) , (1)

where Pj (aj(N(t)), τ) is a Poisson random variable with av-

erage value aj(N(t))τ , and νji is the stoichiometric coefficient

equal to the changes in the number of molecules of type i that

the chemical reaction j operates when it occurs. The parameter

aj(N(t)) is called propensity function of the chemical reaction

j, and it corresponds to the probability that the reaction j
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Fig. 1: Block scheme of the system model and methodology

proposed in this paper.

occurs in an infinitesimal time interval after time t, given the

values in N(t), i.e., the set of all the numbers of molecules for

each type. The propensity function aj(N(t)) for a chemical

reaction j of the type considered in this paper is computed as

follows [17]:

aj(N(t)) = Ωkj
∏

Ni∈Rj

Ni(t) , (2)

where Rj is the set of reactant species for the chemical

reaction j, kj is the reaction rate, and Ω is the volume that

contains these reactants species, Ω1 or Ω2 in Fig. 1.

The propagation of the molecules between the volumes

through diffusion can be modeled at different precision and

scale [1]. For simplicity, and in agreement with [3], in this

paper the Diffusion is modeled through the probability of

capture by a spherical absorber under the assumptions that the

diffusion distance between the two volumes is relatively short

with respect to the average radius of the destination volume

(according to the direction of propagation of the transmitted

message) [18], and most of the molecules that diffuse in the

destination volume are there involved in chemical reactions.

Under this assumption, the probability that each molecule

emitted by a volume is captured by an adjacent volume is equal

to Pcap = rc/R, where rc is the average radius of the receiver

cell, and R is the average distance between the center of the

destination volume Ω2 and the boundary of the volume Ω1,

and we consider the diffusion process as instantaneous with

respect to the evolution of the diffusing molecule species D.

If we consider a number of molecules ND,Ω1
(t) that can reach

the volume Ω2 via diffusion, each with probability Pcap, the

number ND,Ω2
(t) is distributed according to a Binomial [13]

as

P (ND,Ω2
(t)) = Bin(Pcap, ND,Ω1

(t)) . (3)

B. Iterative and Derivative-free Algorithm for Optimizing In-

formation Transfer

According to information theory [19], our goal of optimiz-

ing the information transfer through this channel translates into
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the following:

Iopt (X,Y ) = max
PX(x),x∈X

I (X,Y ) , (4)

where I (X,Y ) is the MI between the transmitted message X
and the corresponding received message Y from the system in

Fig. 1, whose maximum is found with respect to a particular

PX (x) , x ∈ X , which is the probability distribution of the

transmitted message X within the set X of all admissible

messages. The MI is computed as follows [19]:

I (X,Y ) = E

[

PX|Y (X | Y )

PX(X)

]

= E

[

PY |X (Y | X)

PY (Y )

]

. (5)

Main Idea. While analytical solutions to the maximization

in (4) are possible only for very special cases [19], the non-

linear and non-smooth nature of the types of channel models

described in Sec.II-A necessitates a numerical solution, i.e.,

with an iterative algorithm. The BA is a class of these types of

algorithms often utilized for this task, which necessitates the

knowledge of the analytical expressions of the probabilities

of the equivocation PX|Y (x | Y ) , x ∈ X , or equivalently,

the expression of the channel law PY |X (y | X) , y ∈ Y . In

particular, BA has already been successfully applied to basic

MC channels [13], with analytical expressions of the afore-

mentioned probabilities. As a consequence of the mathematical

models detailed in Sec. II-A, which in general are composed

of nested Poisson and Binomial processes according to the

chemical reactions and molecule diffusion through which the

transmitted message propagates, there is no straightforward

way to analytically express these probabilities. A solution

called SLEMI is proposed in [14] where in a context of infor-

mation propagation within a single cell, expressions for these

probabilities are found by fitting experimental data through

logistic curve regression. A BA algorithm is then applied to

numerically find a solution to (4). In this paper, we propose

instead a derivative-free iterative methodology based on the

Nelder-Mead [20] optimization, which does not necessitate

analytical expressions of the aforementioned probabilities, but

just numerical values estimated from the data (simulated, in

the case of this paper). Given the similarity of the overall

context and goal, we will compare the performance of our

methodology with SLEMI based on the BA from [14].

The Nelder-Mead algorithm is a method to search for the

minimum value of a nonlinear function of n variables based

on the concept of a simplex [20]. The algorithm evaluates

the output of the function at a set of n + 1 test points and

then performs the simplex in the factor-space, and continually

forms new simplices by reflecting one point in the hyperplane

of the remaining points [20]. It has been shown that this

algorithm does not always converge to a minimum if the

objective function is not strictly convex [21].

In Fig. 1 (upper) we show the first steps of the Nelder-Mead

algorithm. The blue round-shaped curves represent the contour

lines of the function to be maximized (objective function). It

assumes higher values as the blue becomes more intense. If we

assume that the objective function depends on two variables

µ̄1 and µ̄2, by following the methodology of the algorithm,

we need the simplex to be composed of n + 1 points Q0,

Q1, Q2. The red dots represent the initial simplex Q0init
,

Q1init
, Q2init

. The first sample Q0init
is defined by the initial

value of the variables µ̄1init
and µ̄2init

, while Q1init
, Q2init

are created by adding 5% of each component Qiinit
to the

initial guess Q0init
. Then, the first step of the algorithm

investigates which point of the simplex is farthest from the

function’s maximum value. It is reflected and then discarded.

The green dot represents the new point of the simplex during

the first iteration, that is the substitute of Q0init
. The same

procedure is also proposed in the next iterations of the method.

Subsequently, Q2init
is discarded in favor of the yellow point

in Fig. 1, being now the farthest from the maximum.

Our Methodology based on the Nelder-Mead algorithm has

the following characteristics:

• The objective function to be maximized is the MI of the

chemical channel, i.e., Fobj = I (X,Y ), defined in (5),

which is a function of the probability PX (x) , x ∈ X of

the transmitted message X .

• The probability PX (x) is on its turn defined by the values

of a set of parameters µk, k = 1, . . . ,K, which define the

algorithm search space, as in Fig. 1 (upper).

• The numerical values of PX|Y (x | y) , x ∈ X , y ∈ Y are

recomputed at each iteration of the Nelder-Mead algorithm

from the data by pruning the dataset and estimating the

probability via histograms, as explained in the following.

Search Parameters for PX (x). The number of parameters

K depends on the considered family of distributions for

PX (x). The family of distributions we have chosen for this

work is continuous, the so-called Pearson [22]. The reason

behind this choice is that the Pearson distribution family can

easily be modeled via its first four moments, namely the mean

µ, variance σ2, skewness ∫ , and kurtosis κ. This represents a

good trade-off between degrees of freedom in the shape of

the distribution and number of variables to be optimized in

the iterative procedure. Thus, the pruning at the ith iteration

is performed based on these ith four moments as determined

by the Nelder-Mead algorithm.

Histogram Estimation by Data Pruning. To obtain nu-

merical values of PX|Y (x | y) , x ∈ X , y ∈ Y at each

iteration according to the current probability PX (x) (defined

by the current values of µ, σ2, ∫ , and κ), instead of obtaining

additional data, thanks to the low sensitivity of our iterative

methodology to the dataset size, as can be appreciated from

the numerical results, we are able to reuse the same dataset via

pruning. Pruning algorithms are often used to reduce the size

of databases by removing unused information, or to reduce the

size of neural networks [23], [24]. For our case, we utilize the

following formula:

ki =

⌈

M −
M

pmax

pi

⌉

, (6)

where ki is the number of datapoints (repetition of an ex-

periment/simulation) corresponding to the ith input message

to be removed from the dataset, pi is the probability of that

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on October 11,2024 at 16:04:28 UTC from IEEE Xplore.  Restrictions apply. 



Uniform

pmf(X)

Histograms of pmf(X), pmf(Y)

2) Histograms of pmf(X), pmf(Y)

Non-uniform

pmf(X): 

PRUNING 

Initial dataset

1) Remove samples from datasets 

X, Y according to pmf(X)

Fig. 2: Example of pruning and consequent histogram of the

probability. Only the X dataset is shown for simplicity.

same input message, pmax is the highest probability within the

input distribution PX (x), and M is the initial total number

of datapoints of each input. When removing a datapoint, it is

implicit that we remove both the input and its corresponding

outcome from the dataset. Subsequently, from the pruned

dataset, we estimate via histograms [25] the probabilities

PX (X) and PY (Y ). Then, for each PX|Y (x | y), a histogram

is built by setting the height of each bin as the number of all

the x values that correspond to the those y values grouped

into the same bin of the histogram representing PY (Y ).
Figure 2 is a visual example of pruning. On the x-axis we

have the different input symbols (i.e., 4), the y-axis represents

the number of times the experiment (i.e., the transmission

of the input symbol) is repeated (i.e., 10). We assume that

the dataset contains the same number of datapoints per input

symbol. When the ith PX (x) , x ∈ X is non-uniform, then for

each message x a number of datapoints is removed randomly

according to (6). Then, the histograms of PX (X) and PY (Y )
are estimated from the modified dataset.

While we consider the width of the bins of each histogram

as constant over the considered range of data, i.e., X or Y , the

number of bins of the histograms representing the probabilities

is modified at each iteration by following Doane’s rule [26],

which defines a lower bound on the required number of bins

to reach a desired precision. Furthermore, we impose all the

histograms at the same iteration to have the same bin width.

The pseudocode in Algorithm 1 summarizes the main steps of

our proposed methodology.

Validation and Comparison with SLEMI [14]. For the

purpose of validation, we apply our method to an AWGN

channel Y = X+Z, where Z is a normally-distributed noise,

with a constraint on the amplitude A, in line with [15]. Then,

the obtained PY (Y ) is a mixture of a uniform distribution in

the interval |y| ≤ A and a “split and scaled” Gaussian density

in the interval |y| > A, as in [15].

We perform the analysis for different Signal-to-Noise Ratios

(SNRs), by following the same assumptions as in [15], so that

we can compare the results. In particular, we fix the noise

Algorithm 1: Iterative procedure to optimize I (X,Y )

Procedure: Maximization of Fobj = I (X,Y );
1 while FobjNEW

< FobjOLD
do

2 Calculation of P (X) from its parameters.
3 Pruning technique on X , Y datasets to fit the current

P (X).
4 Doane’s rule to define the optimal number of bins for

the P (X), P (Y ), and P (X | y).
5 Histograms for estimating P (X), P (Y ), and P (X | y).
6 FobjOLD

= Fobj.

7 Fobj = E

[

PX|Y (X|Y )

PX (X)

]

8 FobjNEW
= Fobj.

9 Update of the parameters characterizing P (X).

(a) (b)

Fig. 3: AWGN with amplitude constraint. (a) PX (X) corre-

sponding to Iopt (X) with our method and with SLEMI [14].

(b) Corresponding Iopt (X) obtained as function of the algo-

rithm iterations and validation with McKellips’ upper and

lower bound for different SNRs.

power to be equal to 1. Thus, the SNR of the channel coincides

with the power of the signal P = A2. We consider values for

A such that the SNR ranges from -3 to 8 dB, as in [15].

We generate a dataset via simulation with repetitions such

that we obtain a uniform distribution of the input (i.e.,

the transmitted symbols) with uniformly and monotonically

increasing values. The input-output dataset is composed of

50000 input-output pairs, with an input range spanning from

-2.5 to 2.5, 125 unique input values, and 400 repetitions for

each unique input value.

As in [15], we compare our optimized Iopt (X,Y ) value

for each SNR to the channel capacity bounds obtained us-

ing the McKellips’ formulas [27]. Figure 3b shows that the

Iopt (X,Y ) approaches the McKellips’ lower bound on the

channel capacity, supporting the validity of our methodology.

Furthermore, the yellow dashed line represents the channel

capacity value for different SNRs obtained when applying

SLEMI [14]. This value and the value obtained with our

methodology are comparable for low values of SNR (≤ 5 dB),

while for higher values the SLEMI estimation is above the

McKellips’ upper bound. Since the objective function in [14]

consists of a double maximization, for non-optimal parameters

it can be considered a lower bound on the channel capacity

value. For this reason, we can reasonably say that when the

SLEMI optimal value is above the McKellips’ upper bound,

it overestimates the channel capacity.

The solid blue line in Fig. 3a shows the PX (X) that
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corresponds to the Iopt (X,Y ). This figure corresponds to an

amplitude A = 1. The shape of the PX (X) is nearly the same

for all the considered values of SNR, i.e., two mass points

with non-zero probability near A and −A. While we do not

have a proof that this distribution containing only two mass

points is effectively optimal [28], this result is consistent with

the literature [29], [30], thus reinforcing the validity of our

method. Notice that for cases where the SNR is sufficiently

high, we hypothesize that the capacity-achieving distribution

may include more non-zero and equispaced mass points across

the input distribution, as demonstrated in [29]. The yellow

dashed line corresponds to the optimal PX (X) estimated

through the SLEMI [14] for the same A, which has a similar

shape to the one obtained from our methodology.

III. CASE STUDY: AN ENGINEERED CELL-TO-CELL

MOLECULAR COMMUNICATION SYSTEM

A. LuxR-LuxI-Based Channel

As a first case study of the types of channels detailed

in Sec. II, in this paper we apply our developed methodology

to estimate the optimized information transfer through the

engineered cell-to-cell communication system presented in [3].

In particular, this simulated system is based on the LuxR-

LuxI cell communication modules, where synthetic biology

components are derived from the artificial sender and receiver

design included in the experimental work in [16]. The system

is composed of two biological cells (two volumes) located in

an infinite extracellular environment. One of the two cells acts

as a transmitter, where the source message x is a modulated

number NTx(t) of molecules of β-D-1-Thiogalactopyranoside

(IPTG) [3]. Through a chain of well-defined chemical reac-

tions of the type modeled in (1) and (2), involving proteins

and DNA genes, the IPTG is transformed into the transmitted

signaling molecule Acyl-Homoserine Lactone (AHL), which

can cross the cell membranes (volume boundaries) and diffuse

in the extracellular space. A receiver cell captures diffusing

AHL molecules according to the model in (3) and, after a

chain of other chemical reactions, returns a number NRx(t)
of Green Fluorescent Protein (GFP) molecules, from which the

received information message y is decoded (as the maximum

of NRx(t) [3]). Further details on the modeling and simulation

of this system according to the formulation in Sec. II are here

omitted for space constraints, and can be found in [3].

B. Numerical Results

The aforementioned LuxR-LuxI-Based Channel is modeled

and simulated in-silico via MATLAB SimBiology, as de-

tailed in [3]. The input NTx(t) varies from 3.6× 105 IPTG

molecules, to 3.6× 107 molecules with a step size 3.6× 105

molecules (100 different input messages). This range is chosen

by calculating the average µY and the variance σ2
Y of the

output dataset, and by observing their behavior for different

input values, as suggested in [3]. Our results show that for the

output corresponding to input values ranging from 0 to about

1.4× 107 molecules there is a linear increase of the average

and variance, while for higher values there is a saturation of

(a) (b)

Fig. 4: (a) Output obtained from a uniform input with 100

monotonically increasing IPTG molecule counts and 100 sim-

ulation repetitions per input. (b) Corresponding histogram of

the output.

(a) (b)

Fig. 5: LuxR-LuxI-based channel. (a) PX (X) corresponding

to Iopt (X) with our method and with SLEMI [14], compared

to a Gaussian and Triangular distributions. (b) Corresponding

values of obtained Iopt (X) as function of algorithm iterations.

the average value and the associated variance, which remains

almost constant up to 3.6× 107 molecules. We repeat the

simulation for each input value 100 times. Thereby, we obtain

a 100×100 input-output dataset, which unpruned corresponds

to a uniform input distribution. From a communication per-

spective, this is equivalent to a discrete memoryless channel

with Concentration Shift Keying (CSK) [12].

Figure 4a illustrates the unpruned output dataset generated

from the uniform input dataset. The input is propagated

through the reaction and diffusion processes composing the

MC channel. Figure 4b depicts the histogram of the channel

output considered in Fig. 4a.

The blue continuous line in Fig. 5b shows the progressive

optimization of Iopt (X,Y ) operated by our methodology,

as detailed in Sec. II-B. The Iopt (X,Y ) value generally

increases with the number of iterations of the algorithm,

until it converges. The Iopt (X,Y ) value we obtain is 1.60

(bit/ch. use). The corresponding input distribution PX (X)
from the Pearson family is represented in Fig. 5a with the blue

continuous line. As in the AWGN case, the optimal PX (X)
has two peaks at the extreme values of the input dataset. Thus,

the method privileges the two symbols farthest from each other

in this case as well. The four moments corresponding to this

specific distribution of the Pearson family are µ = 1.60×107,

σ2 = 1.15× 107, ∫ = −4.03× 10−17, and κ = 1.46.

The MI value for this channel is evaluated in [3] by

considering a Gaussian and a Triangular input distribution. For

the sake of comparison, we plot our results against the MI

value for these distributions. Fig. 5a represents the optimal
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distribution found by our method, as well as the Gaussian

(red dot dashed line) and Triangular (green dotted line) input

distributions. The MI values obtained from the considered

distributions are plotted in Fig. 5b. The Iopt (X,Y ) obtained

by the proposed method, 1.60 (bits/ch. use), is greater than

the MI values obtained by Gaussian and Triangular input

distributions (i.e., 0.55 and 0.76 (bit/ch. use), respectively).

The yellow dashed lines in Fig. 5a and b represent the

optimal input distribution and corresponding capacity value,

1.80 (bit/ch. use), obtained when applying SLEMI [14] to

the molecular dataset. The channel capacity value obtained by

SLEMI is slightly higher than that obtained by the proposed

method. Although the input distribution found by SLEMI

has more than two peaks, most of them are concentrated

near the extremes of the input ranges, similar to the PX (X)
observed when using the proposed methodology. Additional

investigation into why SLEMI provides a higher bound in

some cases is left to future work.

IV. CONCLUSION

This paper has focused on the problem of optimizing the

information transfer (i.e., the MI) in an MC system where the

combined effects of chemical reactions and molecule diffusion

hinders the application of any information-theoretic analytical

methodology. In addition, the practical and realistic constraint

on a maximum value of transmitted molecules makes the

problem of estimating the MI even more challenging. To

address these issues, a novel iterative methodology based

on the Nelder-Mead algorithm, which does not require any

analytical formulations of MC components and their stochastic

behavior, is proposed to estimate the optimal MI and is

validated against known results from the literature. Numerical

results obtained by applying this methodology to a simulation-

based scenario abstracting an MC channel between genetically

engineered cells reveal the viability of information transfer

optimization via proper design of the distribution of the input

messages. Future application scenarios could make use of our

methodology to not only optimize chemical and biological

experimental design, but also support synthetic biology in the

engineering of communication systems and networks that work

and interact in fully biochemical environments.
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