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ABSTRACT
Redox-based molecular communication has been demonstrated
to facilitate information flow between biology and electronics. In
this paper, an estimate Mutual Information (MI) is provided using
differential entropy and Doane’s binning method for a molecular
channel based on redox reactions. Though preliminary, the obtained
MI will shed further light on the inherent potential of this novel
communication technology.

CCS CONCEPTS
• Mathematics of computing → Information theory; • Com-
puting methodologies → Modeling and simulation.
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1 INTRODUCTION
With the current advances in the field of implantable and wearable
devices, there is need for a robust technology to realize communica-
tion between biology and electronics, i.e., the molecular/biological
domain and electrical/electronics domain. A tool that can be used
to achieve this is Molecular Communication (MC). MC deals with
the molecular/biological domain where particles exist at molecular
scale (micro and below) while employing metrics used in generic
electrical communication domain to analyze information in molec-
ular/biological domain. Creating an interface that can convert the
information freely between the molecular and electrical domain can
be achieved via many modalities and one such modality is based
on redox reactions [4]. In [3], we built a simulation tool based on
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Figure 1: System model with noise.

the experimental proof of concept introduced in [4]. In this pa-
per, we discuss our latest advancements and take it a step further
to provide a preliminary estimate for the performance of such a
communication channel in terms of Mutual Information (MI).

2 SYSTEM MODEL AND IMPLEMENTATION
Let us briefly discuss about the system model and implementation
based on Fig. 1. Considering a single redox active species and as-
suming an initial homogeneous concentration as input, i.e., a Dirac
delta input signal, the complete process at the basis of the redox
channel between a molecular input and an electrical output can be
expressed in terms of an inhomogeneous Fick’s law as{

𝜕𝐶𝑆 (𝑥, 𝑡)
𝜕𝑡

= −∇(−𝐷𝑆∇𝐶𝑆 (𝑥, 𝑡) ±
𝐼 (𝑡)
𝑛𝐹𝐴

}
𝑆=𝑂,𝑅

, (1)

𝐼 (𝑡) = 𝑛𝐹𝐴[𝑘𝑓 (𝑡)𝐶𝑂 (𝑥, 𝑡) − 𝑘𝑏 (𝑡)𝐶𝑅 (𝑥, 𝑡)]I𝑥 ∈electrode , (2)

where 𝐶𝑆 is the concentration of a redox-active species in a
redox state 𝑆 at time 𝑡 in space 𝑥 , 𝐷𝑆 is the diffusion coefficient
of the species in a redox state 𝑆 , 𝐼 (𝑡) is the current at time 𝑡 , 𝑛
is number of electrons transferred, 𝐹 is the Faraday constant, 𝐴
is the cross-sectional area of the reacting surface of the electrode,
𝑘𝑓 (𝑡) is the forward reaction rate constant at time 𝑡 , and 𝑘𝑏 (𝑡) is the
backward reaction rate constant at time 𝑡 . As opposed to the system
model equations in [3], here we use redox-state-based diffusion
coefficients.

The equations above do not account for the noise involved. The
noise sources as seen in Fig. 1 are the diffusion noise and the reac-
tion noise. Both sources follow Poisson probability densities. As
their name suggests, the diffusion noise is caused by the random
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Brownian motion that dictates the diffusion process while the re-
action noise is generated by the stochastic behaviour exhibited by
a chemical reaction. It should be noted that the diffusion noise is
considered only at the region next to the electrode since the noise in
the rest of the space is negligible as it balances out in the diffusion
process. A more robust and generalized system model along with
corresponding equations has been discussed at length in [3].

Using a finite difference methodology, we converted the above
analytical equations into computational expressions for their im-
plementation into the code [2][1]. The equations are described as
follows

{
𝐶𝑆 (𝑡 + 1, 𝑥) = 𝐶𝑆 (𝑡, 𝑥) + 𝐷𝑀𝑆 [𝐶𝑆 (𝑡, 𝑥 − 1)−

2 ∗𝐶𝑆 (𝑡, 𝑥) +𝐶𝑆 (𝑡, 𝑥 + 1)]
}
𝑆=𝑂,𝑅

,

(3)

{
𝐷𝑀𝑆 =

𝐷𝑆Δ𝑡

(Δ𝑥)2

}
𝑆=𝑂,𝑅

, (4)

𝐼 (𝑡) = 𝑛𝐹𝐴
𝑘𝑓 (𝑡)𝐶𝑂 (1, 𝑡) − 𝑘𝑏 (𝑡)𝐶𝑅 (1, 𝑡)

1 + Δ𝑥 ( 𝑘𝑓 (𝑡 )
𝐷𝑂

+ 𝑘𝑏 (𝑡 )
𝐷𝑅

)
, (5)

where 𝐶𝑆 is the concentration of a redox-active species in redox
state 𝑆 (𝑂 or 𝑅) at time 𝑡 and distance 𝑥 from the electrode, 𝐷𝑀𝑆 is
the model diffusion coefficient of the species in redox state 𝑆 , 𝐷𝑆

is the diffusion coefficient of the species in redox state 𝑆 , Δ𝑡 is the
sampling time, Δ𝑥 is the sampling space used in the finite difference
method, 𝐼 (𝑡) is the output current at time 𝑡 , 𝑘𝑓 (𝑡) is the forward
reaction rate constant at time 𝑡 , 𝑘𝑏 (𝑡) is the backward reaction rate
constant at time 𝑡 , and𝐶𝑂 (1, 𝑡) and𝐶𝑅 (1, 𝑡) are the concentrations
of the species in oxidized and reduced states respectively in the
region next to electrode at time 𝑡 .

3 RESULTS
Using the simulation code detailed in [3] as basis, we updated the
model to consider the use of different diffusion coefficients based on
the molecule’s current redox state, i.e., oxidized or reduced. In the
scope of this paper, we run the simulation for lower concentration
where it is more likely to produce a significantly lower SNR leading
to possible error at the electrical receiver, as shown in Fig. 1. For
the calculation of MI, we used an input concentration range from
1fM to 1.9fM with increments of 0.1fM, resulting in a total of 10
inputs. We simulated the channel for each input value for 1000 runs
with our code in Matlab, and we used the peak anodic current as
the channel output to calculate entropy and MI. Doane’s method
has been employed to estimate a reasonable bin size for the data [5].
Figure 2 shows the probability distribution function (pdf) for each
input concentration. Notice that the pdf for higher concentrations
is actually on the farther left, this is attributed to the fact that the
output anodic peak current is negative. For this range-limited input,
we achieved an output entropy of 3.5643 bits, a conditional entropy
of the output given input of 2.6614 bits, and a MI of 0.9029 bits.

Figure 2: PDF for each input concentration within the range
1fM - 1.9fM.

4 CONCLUSION
In this paper, we shared our latest results in the analysis of a redox-
based MC channel. We also used information theoretic and statisti-
cal analysis methods to provide a preliminary estimate of the redox
channel communication performance in terms of MI. We believe
this framework will enable us to better understand and analyze the
information flow in a redox-based molecular-electrical interface
and further optimize such an interface by further investigation
in the direction of estimating information capacity bounds as a
function of physical and biochemical parameters.
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