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Abstract

Motivation: Empowered by advanced genomics discovery tools, recent biomedical research has produced a massive amount
of genomic data on (post-)transcriptional regulations related to transcription factors, microRNAs, long non-coding RNAs,
epigenetic modifications and genetic variations. Computational modeling, as an essential research method, has generated
promising testable quantitative models that represent complex interplay among different gene regulatory mechanisms
based on these data in many biological systems. However, given the dynamic changes of interactome in chaotic systems
such as cancers, and the dramatic growth of heterogeneous data on this topic, such promise has encountered
unprecedented challenges in terms of model complexity and scalability. In this study, we introduce a new integrative
machine learning approach that can infer multifaceted gene regulations in cancers with a particular focus on microRNA
regulation. In addition to new strategies for data integration and graphical model fusion, a supervised deep learning model
was integrated to identify conditional microRNA-mRNA interactions across different cancer stages. Results: In a case study
of human breast cancer, we have identified distinct gene regulatory networks associated with four progressive stages. The
subsequent functional analysis focusing on microRNA-mediated dysregulation across stages has revealed significant
changes in major cancer hallmarks, as well as novel pathological signaling and metabolic processes, which shed light on
microRNAs’ regulatory roles in breast cancer progression. We believe this integrative model can be a robust and effective
discovery tool to understand key regulatory characteristics in complex biological systems. Availability: http://sbbi-panda.u
nl.edu/pin/
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Introduction
Dysregulation of gene expression in human disease represents a
highly complex process involving various different mechanisms.
In addition to transcription factors (TFs), microRNAs (miRNAs),
a class of small non-coding RNAs, have been identified that
can bind to the complementary sequences on their target
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mRNAs, act as post-transcriptional gene silencers through
mRNA degradation and translation inhibition, and participate
in numerous physiological processes including cancers [1, 2]. It
has been recently revealed that miRNAs regulate target genes
in a dynamic and conditional manner where the dramatic
complexity can be explained by RNA competitive binding and
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multifaceted gene regulation [3–7]. One miRNA can simultane-
ously bind to various target mRNAs, long non-coding RNAs and
circular RNAs, and meanwhile, one gene can be regulated by
multiple miRNAs.

Competition takes place when different miRNAs target the
same transcript at the same or close binding regions. Differ-
ently, cooperation exists when multiple miRNAs bind to different
non-overlapping regions or different copies of the same target
transcript [3–6]. Understanding the impact of miRNAs regulation
in human disease is important but challenging as the dynamic
nature of miRNA interactions, as well as the evolving functions,
is largely undetermined. Moreover, other factors such as methy-
lations, long non-coding RNAs (lncRNAs) and genetic mutations,
and especially copy number variations (CNVs), also affect the
equilibrium of gene expression in a certain biological condition.
Each of the aforementioned mechanisms stresses a different
dynamic property of gene regulation, underscoring the need of
a causal model that can integrate all kinds of interactions.

Expression correlations between gene-gene and miRNA-
gene were commonly used as strong indicators for interactions
[8–11]. Prior studies have explored methods such as Bayesian
[12], regression [13, 14] and machine learning [15] in studying
gene regulations by both TFs and miRNAs. For example, we
have previously built a meta-Lasso regression model based on
a comprehensive set of genomic profiles, including both gene
and miRNA expression in various cancer conditions, CNVs and
DNA methylation, and sequencing-detected TF binding sites and
miRNA-mRNA interactions [7]. The model considered the altered
gene expressions as resulting from a combination of various
regulations. Based on the conditional miRNA-gene interactions
derived from each model, modularized miRNA regulation was
assessed based on its involvement in fundamental human
pathways [16]. By integrating cancer genomic data from The
Cancer Genome Atlas (TCGA), we identified novel regulatory
modules where participating miRNAs jointly bind to functionally
related genes in different types of cancer [7]. This work
demonstrated how modeling and information fusion can
facilitate the discovery of miRNA competitive binding in human
cancers, as well as modulated miRNA regulation. However,
this previous model was focused on miRNA regulation at each
individual gene, not accounting for gene-gene interactions, and
therefore showed limitations in general functional analysis.

In this study, we explore integrated solutions to modeling
miRNA-gene interactions by constructing comprehensive gene
regulation networks (GRNs) because of two major reasons. First,
sophisticated causal network models such as Bayesian Networks
(BNs) enable us to use the power of causality and infer regulatory
relationships between genes and miRNAs [1, 17–20]. Second,
such probabilistic models are robust to noise in data, which
makes this method appealing in biological data analysis where
experimental and technical errors are inevitable. Despite these
strengths, we are also aware of challenges in the following
aspects. (i) Effective network fusion, referring to the integration
of heterogeneous interaction networks inferred from different
models. For example, authors of previous works have applied
network analysis on the basis of generally predicted miRNA-
gene networks to identify specific sub-networks associated with
the condition of interest, e.g. human cancers [9, 21, 22], and
none has fully addressed the multi-layer network fusion prob-
lem in a real biosystem. In BNs, inclusion of a prior derived
from sequence-related features in the miRNA-gene regulation
model may improve the structure learning stage but still fail
to fully capture the complex dynamics throughout entire net-
works, where competition and cooperation are involved. There-
fore, we need to design a more generalized framework for model

integration while keeping the proper causality. (ii) Effective infor-
mation fusion, referring to the integration of heterogeneous
data analyses that reflect distinct regulatory mechanisms. For
example, each type of high-throughput data such as microarray
or RNA-seq-based expression profiles, CLIP- or CLASH-based
miRNA-RNA interactions, and ChIP-seq TF binding profiles, as
well as methylation and genetic profiles from DNA sequencing
analysis can be used to infer a certain type of molecular interac-
tion. Effective information fusion can transform a static interac-
tion analysis into a semi-conditional interaction analysis, lead-
ing to more practically useful results. (iii) Computational feasi-
bility. Learning BNs from data is an NP-hard problem; therefore,
constraint- and heuristic-based structure learning algorithms
should be considered to reduce the search space [23–25]. To this
end, we can adopt a Markov Chain Monte Carlo-based structure
learning algorithm (e.g., Madigan et al. [26]), which reproduces
Markov chains on possible graphs by simulating adding, remov-
ing and reorienting edges to sample graphs preprocessing. For
example, imbalanced sample size remains one of the major
challenges in modeling complex cancer processes due to the
difficulty in collecting large-scale samples, e.g. much fewer early
stage tumor samples compared with available normal control
samples. In most TCGA datasets, there are skewed numbers of
samples in different cancer types or stage groups, which may
cause biases when building and comparing models.

To summarize, we propose a new methodology based on
mixed graphical models to infer novel regulatory mechanisms
underlying cancer development and progression. We believe
that a systematic understanding of the structural difference of
GRNs across different phenotypes can shed light on cancer pro-
gression factors from regulatory perspectives. Our objectives is
twofold: (i) we aim to model causal relations in GRNs by utilizing
an information-theoretic approach, which prevents the learned
cancer-related GRNs from deviating from the GRNs of normal
samples; (ii) we aim to find confounding factors, identify indirect
causal and evident effects, common causes and effects between
the variables, as well as identifying their biological functions. We
apply this analysis to breast cancer data to demonstrate the use
and power of this new approach.

Materials and Methods
Datasets

RNA-Seq data on both gene and miRNA expression were col-
lected on The Cancer Genome Atlas Breast Carcinoma by using
GDCRNATools R package [27]. Common samples with both gene
and miRNA data available were extracted, which involves 104
solid tissue normal and 1072 tumor samples (Stage 1: 179, Stage
2: 608, Stage 3: 242, Stage 4: 20). After Trimmed Mean of M (TMM)
normalization (29) and Voom transformation [28], analysis of
differentially expressed genes (DEGs) were performed by limma
[29] and edgeR [30] methods. DEGs with fold-change less than 2
are filtered out and only the common DEGs (1218 up-regulated,
1236 down-regulated) found by the limma and edgeR were used
for the downstream analysis.

The miRNA-mRNA interactome profiles obtained from star-
Base database [2] reveal more than 2,500,000 reported CLIP/-
CLASH interactions where 863 066 interactions are identified in
different breast cancer cell lines BT474, MCF7 and MDA-MB-231
[31–34].

Data augmentation

In our dataset, each stage group has different numbers of
samples. In order to reduce the effect of size difference and
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conduct an unbiased experiment, we used Conditional Vari-
ational Autoencoder (CVAE) [35] to produce equal number of
samples across groups. Similar to Variational Autoencoder (VAE)
[36], CVAE as shown in Figure 1a is also a generative model but
it supports to generate data label. The objective function of VAE
is optimizing log likelihood of data P(X) as

log P(X) − DKL [Q(z | X) ‖ P(z | X)] = E[log P(X | z)]

− DKL [Q(z | X) ‖ P(z)] . (1)

The VAE model has two parts: the encoder Q(z | X) and the
decoder P(X | z), where z denotes latent variables. Since VAE
directly models z both in encoder and decoder parts, it can-
not generate data for a given class. However, CVAE takes the
class variable into consideration when optimizing its objective
function in

log P(X | c) − DKL [Q(z | X, c) ‖ P(z | X, c)] = E[log P(X | z, c)]

− DKL[Q(z | X, c)‖P(z | c)] , (2)

where c denotes the class label, and both encoder and decoder
now are conditioning on latent variables z and class labels c.

The detailed description about the robustness evaluation and
the augmentation effect on network inference was provided in
Supplementary Table 1, see Supplementary Data available online
at http://bib.oxfordjournals.org/.

Gene regulation network reconstruction

Figure 1b depicts the overall workflow to construct a GRN that
explains regulatory mechanisms based on expression and inter-
actome profiles.

First, a Gaussian graphical model (GGM) was explored to
explain the dependency relationship between genes, the vari-
ables in a continuous multivariate system. In order to learn
the underlying relationships embedded under complex GRN, we
assume that our data are sampled from the following multivari-
ate Gaussian distribution:

p(x | μ, �) = 1
(2π )n/2|�|1/2

exp
(

− 1
2

(x − μ)��−1(x − μ)
)

, (3)

where μ is the mean vector and � is the covariance matrix. � is
a square positive definite matrix and � = �−1 is called precision
matrix. We can rewrite the formula in Equation 3 for μ = 0 and
� as

p (x1, x2, . . . , xn | μ = 0, �) = |�|1/2

(2π )n/2

exp

⎛⎝− 1
2

∑
i

ωii (xi)
2 −

∑
i<j

ωijxixj

⎞⎠ . (4)

Equation 4 can be considered as a continuous Markov Random
Field with potentials defined on every node and edge where
ωii(xi)2 is a node potential denoted as φ(xi), and ωijxixj is an edge
potential denoted as φ(xi, xj). Given n×p data matrix X, where n is
the number samples, p is the number of genes, and observations
x1, . . . , xn are independent and identically distributed (i.i.d) and
sampled from N (μ, �), where � is p × p positive definite matrix.
Two variables pi and pj are conditionally independent if and

only if �[i, j] = 0 [37]. The problem for learning the conditional
independence relationship between the variables with the given
data becomes now estimating the coefficients ωii and ωij shown
in Equation 4.

The scaled log-likelihood of a sample x ∈ R
p in a GGM with

mean μ and precision matrix � is, up to a constant given by

L(�, x) ≡ log det(�) − (x − μ)��(x − μ) . (5)

We define the average scaled log-likelihood of N samples
x(1), . . . , x(n), which depends only on sample covariance matrix
�̂ as

L(�, ̂�) ≡ 1
N

∑
n

L
(
�, x(n)

)
= log det(�) − tr(�̂�) . (6)

It is common to encounter sparse networks in real-world appli-
cations. We impose a sparsity assumption in our learning prob-
lem because of three reasons: (i) biological networks are often
sparse [38]; (ii) computations on dense graphs require huge
amount of resources and (iii) dense graphs are difficult to inter-
pret. Banerjee et al. [39] showed that finding the sparse precision
matrix which fits the best to a dataset is an NP-hard problem.
Additionally, p × p covariance matrix � requires O(p2) param-
eters for accurate estimation; however, we often have n � p.
Therefore, some form of regularization can be used to make the
computation tractable. Structured sparsity can be obtained by
regularizing with �1-norm. Our goal is to solve the following regu-
larized maximum likelihood problem by minimizing regularized
minus log-likelihood as follows:

min
�>0

L(�) := tr(̂��) − log det(�) + λ‖�‖1 . (7)

Equation 7 is a convex optimization problem where regulariza-
tion parameter λ > 0, and linear term (tr(̂��)), the negative log
determinant function (log det(�)), the �1 penalty and the set of all
positive definite matrices are convex. The solution to the convex
optimization problem in Equation 7 is known as the graphical
lasso [40]. Learning the structures using the observations in
different groups separately does not take into consideration the
similarities between their structures. In fact, the structure of a
graphical model on a single sample group should not deviate
much from the rest. Since differences between the graphical
models are of interest, Danaher et al. [41] proposed a technique
for jointly estimating multiple graphical models. They solved
the following optimization problem subject to constraint that
�1, . . . , �(K) are positive definite:

min
{�>0}

L({�}) :=
K∑

k=1

tr(̂�
(k)

�(k)) − log det(�(k)) + P({�}) , (8)

where P({�}) denotes a convex penalty function. They defined
two regularization functions to foster the precision matrices to
share certain characteristics. Their first proposed regularization
function, fused graphical lasso as shown in Equation 9, applies
�1 regularization for sparsity constraint, and the fused lasso
[42] penalty regularization function to the differences between
corresponding elements of each pair of precision matrices to
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encourage similar edge values.

P({�}) = λ1

K∑
k=1

∑
i �=j

|ω(k)
ij | + λ2

∑
k<k′

∑
i,j

|ω(k)
ij − ω

(k′)
ij | , (9)

where λ1 and λ2 are non-negative tuning parameters. Second
regularization function they proposed, group graphical lasso as
shown in Equation 10, also applies �1 regularization for sparsity
constraint, and the group lasso penalty [43] to the (i, j) element
across all K precision matrices in order to have an identical
pattern of non-zero elements in the precision matrices.

P({�}) = λ1

K∑
k=1

∑
i �=j

|ω(k)
ij | + λ2

∑
i �=j

√√√√ K∑
k=1

ω
(k)2

ij . (10)

We tune the regularization parameters λ1 and λ2 using an
approximation of Akaike information criterion (AIC) defined as
follows:

AIC(λ1, λ2) =
K∑

k=1

[
nktr

(
�̂

(k)
�̂

(k)
λ1,λ2

)
− nk log det(�̂

(k)
λ1,λ2

) + 2Ek

]
, (11)

where K is the number of class, Ek is the number of non-zero

elements in �̂
(k)
λ1,λ2

and nk is the number of observations in class
k. Grid search can be used to select λ1 and λ2 that minimizes
AIC(λ1, λ2) score. When the number of variables p is too large,
computing AIC(λ1, λ2) for large number of (λ1, λ2) pairs is a com-
putationally intensive task. One way to remedy this problem is
first searching λ1, fixing its optimal value for a search over λ2.

miRNA-gene binding network

Next, we learned a BN to represent the binding relationship
between miRNAs and genes. All the reported miRNAs-gene
interaction sites were collected from the starBase [2] database.
Among all 2454 DEGs, starBase reported 166 669 interactions
for 2030 genes that involve 617 unique miRNAs. We used these
interactions to build the evidence matrix E, where E[i, j] = 1
if there is a reported interaction between gene i and miRNA j
in starBase. We first used the Greedy Hill Climbing method to
find initial directed acyclic graphs (DAGs), and then applied the
Tabu search algorithm starting with those DAGs with tabu size
100 and a maximum of 2 changes that decreases the score of
model. The Bayesian Dirichlet equivalence uniform (BDeu) [44]
scoring implemented in aGrUM package [45] was used for this
score-based learning process.

Given many constraint-based, score-based and hybrid struc-
ture learning algorithms that have been proposed for BN struc-
ture learning, as reviewed and compared by Scutari et al. [46],
we summarize here why we chose a score-based method in this
study. In general, the advantage of score-based methods comes
from the ability of formulating the learning problem as an opti-
mization problem. The scoring approach is mainly implemented
through two steps, one scoring the candidate structures with
respect to given data while the other exploring the search space
of structure. Local greedy and heuristics search methods are in
necessity as the number of possible DAGs grows exponentially
with the number of random variables. Scutari et al. [46] has
conducted a performance analysis to compare algorithms in
different categories. It was found that, based on both simu-
lated and real-world data, constraint-based algorithms do not

appear to be more efficient or more sensitive to errors than
score-based algorithms and hybrid algorithms are not faster or
more accurate than constraint-based algorithms. Tabu search
generally outperforms the rest of the algorithms. BDe score
was proposed which considers the likelihood equivalence but
is still impractical to compute. BDeu overcomes both issues by
defining a uninformative prior on model parameters [47]. When
we trust our knowledge of the prior distribution, we can make
the contribution of the prior to the posterior stronger. Since, in
this study, we want the data to dominate the posterior, we set the
equivalent sample size to 1 which is significantly smaller than
our dataset. Our aim is to make discoveries from data without
strong assumptions for which Bayesian scoring methods provide
the means.

Once we obtained a DAG for binding network, we converted
the DAG to its Markov equivalent undirected graphical model
(moralized graph). In the equivalent undirected model, there
is an undirected edge between two nodes if they share a
directed edge in the original graph or they are parents of the
same node. In the breast cancer case, the binding network
in the DAG and undirected graphical model have 1678 and
3137 edges, respectively. In order to explain the impact of
miRNA-mediated regulation in the gene interaction networks,
we used the entropic Gromov-Wasserstein distance [48] to
assess the similarity between two phenotypes by including
only expressions of genes involved in direct interactions of
miRNAs as well as the interactions of their dependencies.
As shown in Figure 1C, calculating the distance of normal
and cancer expression profiles to understand the impact of
miRNA M1 involves both the expressions of direct interaction
with G1 and all interactions of its dependencies G3. We only
kept the distances if they are greater than the threshold,
0.0127, which is the distance between the normal and cancer
profiles based on the entire DEGs. We then ranked the miRNA-
mRNA interactions based on the distance with the reasoning
that existence of top-ranked binding cases differentiates the
regulatory mechanisms in cancer and normal more than other
binding sites.

Conditional interactions identified using supervised
neural network model

We explore a deep learning solution based on Convolutional
Neural Network (CNNs) [49] to elucidate the conditional miRNA-
mRNA interaction based on gene and miRNA expression profiles
in this study. CNN is a special kind of deep neural network,
designed to be spatially invariant and to recognize patterns
directly from an input. It is composed of multiple building blocks
such as convolution layers, pooling layers and fully connected
layers. Early layers of CNN models learn low-level features, while
deep layers learn high-level features which are composed of low-
level features. We designed multiple layers of two-input 1D CNN
model to discover spatial gene and miRNA features. In our CNN
architecture as shown in Figure 1d, we added max pooling layers
after convolution layers to reduce spatial dimensions which
also helps to control overfitting. Additionally, we added dropout
layers after dense layers to control overfitting. We truncated the
CNN architecture at concatenation layer and saved the weights
in the last dense layers before concatenation layers after training
is complete.

We collected miRNA-gene binding interactions reported by
CLASH, CLIP experiments for BT474, MCF7, MDA-MB-231 breast
cancer cell lines limited to our DEG set from starBase. A total of
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Figure 1. (A) The CVAE architecture. c denotes the class label and z denotes latent variables. Reparameterization trick allows fast sampling from distributions of normal

and cancer samples learned from original data. This extension of VAE uses class information to learn class specific distributions. (B) The overall workflow. Following

normalization and differential gene expression detection, our workflow supports generation of new samples to address the limitation of low number of observations

compared with the number of variables. Our framework utilizes the miRNA-gene interactions as evidence in our probabilistic model. Inferences are strengthened

by these evidences. Our workflow supports further functional analysis based on the differences in stage specific networks. (C) Illustration of connecting GRN and

miRNA co-binding models. To remove all effects of a given miRNA, e.g. M1, we need to remove all its immediate targets, namely G1, and indirect targets through its

dependencies, in the figure this is G3 due to M2. (D) Two input 1D CNN deep learning model. Each block shows the type of layer we used for creating architecture. Last

dense layer is a classification layer to predict if there is a binding relationship between given miRNA and gene.
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Figure 2. Hierarchical clustering view of (A) the original and (B) after data augmentation gene expression profiles in the TCGA-BRCA dataset across normal and four

stages.

80 199 miRNA-gene interactions reported by at least three dif-
ferent experiments between 596 unique miRNAs and 2454 DEGs.
These reported interactions serve as positive instances in our
classifier. One branch of the architecture gets gene expression
values, and the other branch gets miRNA expression values and
they are concatenated down the line for performing binary clas-
sification task to predict binding relationships from expression
values. We performed batch training with batch size 16 for 100
epochs. As the number of negative labeled pairs is much larger
than positives, we sub-sampled equal number of pairs for train-
ing 10 different times. We used repeated 5-fold cross validation
(CV) where repeat number is 10 for model selection. In addition
to interaction prediction, one main objective of creating this CNN
model was to demystify perplexing disposition of genes and
miRNAs seen in a multidimensional space in a projected learned
manifold. We used t-distributed stochastic neighbor embedding
(t-SNE) manifold learning algorithm [50] to visualize learned
features that are associated with interacted genes and miRNAs
in Euclidean space.

Cross-stage functional analysis

We built networks for each progressive stage following the afore-
mentioned steps and then investigated the structural differ-
ences of the learned models. Specifically, we focus on gene-
gene or miRNA-gene interactions that are newly introduced to
each stage and absent in the preceding stage, which are defined
as stage-specific interactions. For instance, if there exists an
interaction between gene A and gene B in stage 1, and interaction
between gene B and gene C in stage 2, then we only consider
gene A for stage 1, and gene C for stage 2 for functional analysis.
We excluded the common gene B in these interactions from set
enrichment analysis because including such a common gene
may undermine differences between pairing patterns specific to

stages. Based on this information, functional roles enriched in
each stage was analyzed through the following approaches. First,
genes that interact and function together would more likely be
in the same cluster, along with their miRNA regulators. Gaussian
Mixture Model (GMM), an unsupervised parametric statistical
model, was used for clustering. Specifically, K-component GMM,
G, is defined as

G =
K∑

k=1

πk N (x|μk, �k) , (12)

where the parameters for each component θk = {πk, μk, �k}
are mixing coefficients, mean and covariance. The covariance
matrix of a Gaussian distribution determines volume, shape and
orientation of the clusters. Specifying covariance matrix type
provides different models that may better explain the structure
of the data. Approaching clustering problem from a probabilistic
viewpoint, reduces the problem into inferring θk. Our goal is
to model given data X with linear superpositions of multiple
Gaussians. In order to estimate θk, we need to maximize the
log-likelihood of the GMM given by

log p(X| θ ) =
N∑

n=1

log

{
K∑

k=1

πk N (xn|μk, �k)

}
. (13)

Non-linear optimization of the likelihood function is required
for high-dimensional datasets. Since there are no closed-form
solutions to ∂

∂θ
log p(X|θ ) = 0, we used Expectation-Maximization

algorithm [51] to find a maximum likelihood solution for the
GMM model. Since there is no prior knowledge for optimum
number of clusters and the covariance type, we create a model
for each combination of covariance type (spherical, tied, diagonal
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Table 1. Significantly enriched pathways identified by SPIA as
activated

Pathway Name Status Cluster
IDs

Amphetamine addiction Activated 9
Bacterial invasion of epithelial cells Activated 6
Chemokine signaling pathway Activated 11
Complement and coagulation cascades Activated 15
Cytokine-cytokine receptor interaction Activated 11
Dilated cardiomyopathy Activated 10
ECM-receptor interaction Activated 4
Fanconi anemia pathway Activated 8
Focal adhesion Activated 4
HTLV-I infection Activated 9
Insulin signaling pathway Activated 16
Oocyte meiosis Activated 8
p53 signaling pathway Activated 8
Salmonella infection Activated 9
Serotonergic synapse Activated 6

Table 2. Significantly enriched pathways identified by SPIA as
inhibited

Pathway Name Status Cluster
IDs

Adipocytokine signaling pathway Inhibited 16
Alcoholism Inhibited 7
Amoebiasis Inhibited 4
Cell cycle Inhibited 8
Fc gamma R-mediated phagocytosis Inhibited 11
Focal adhesion Inhibited 6,15
HTLV-I infection Inhibited 8
Influenza A Inhibited 11
Malaria Inhibited 10
Measles Inhibited 11
Pancreatic cancer Inhibited 8
Pathways in cancer Inhibited 8,10,13
PPAR signaling pathway Inhibited 16
Progesterone-mediated oocyte
maturation

Inhibited 8

Systemic lupus erythematosus Inhibited 7
Tight junction Inhibited 6

and full) with the number of clusters ranged from 1 to 50. After
estimating the parameters for each model, we used Bayesian
information criterion (BIC) [48] to select the model that explains
data the best.

Given a list of genes in the clusters, the Gene Ontology (GO)
Enrichment Analysis was performed to assess their biological
significance by testing over-representation of GO terms. We
used Fisher’s exact test to calculate a p-value determining the
probability of identifying that many genes for a given term by
chance alone. As we test multiple GO terms simultaneously and
these tests are highly correlated, individual p-value of each test
is not a good indicator that a term is enriched. Therefore, we
used a Benjamini–Hochberg multiple-testing correction with a
p-value < 0.05.

Cells undergo aberrant regulation of signaling pathways dur-
ing the process of cancer development. Further pathway analysis
was conducted using Signaling Pathway Impact Analysis (SPIA)
[52] to interpret the functional changes of cell signaling by using
the topological information of signaling pathways. Based on

the altered gene expression, SPIA measures the perturbation
in pathways. It outputs two probabilities based on the over-
representation of DEGs in a given pathway and the perturba-
tion of the pathway reflected by the gene expression changes
propagated along the pathway topology. The first probability
represents the significance of the given pathway using over-
representation evidence. Modeling the distribution of number
of DEGs in a pathway with hypergeometric distribution, SPIA
calculates the probability of having DEGs at least as many as the
number observed in a particular pathway. The second probability
uses the perturbation amount information and represents the
probability of having a total perturbation greater than the one
observed in the given pathway. A global probability value is
obtained by combining these two probabilities and used to rank
the pathways to significance test the perturbation.

Results
Stage-specific regulatory networks in breast cancer

In the breast cancer dataset, there are five class labels: normal,
stage 1, stage 2, stage 3 and stage 4. We split our dataset to
80 and 20% for training and testing, respectively. In our CVAE
architecture, the input, hidden and latent dimensions are 2454,
400 and 50, respectively. We do batch training with the batch
size 64 for 1000 epochs and we set learning rate to 0.001. After
training is complete, we generate 500 samples for each of the five
groups. As we can see in Figure 2a, original expression profile of
DEGs does not show clearly different patterns across five groups,
which is partially due to the fact that the number of samples in
each group is largely imbalanced and insufficient for a decent
separation. On the other hand, with generated samples by CVAE
as shown in, Figure 2b, it achieves to differentiate samples in
different groups as well as improving the distinction of profile for
up and down regulated genes. Additionally, clustering analysis
shows that normal and cancer samples fall into distinct clus-
ters. Note that the heatmap is used to help demonstrate our
model performance visually on generated new data. The idea
is not improving the clustering algorithm performance, but to
show that model generates meaningful data. Within the cancer
cluster, cancer stages 2 and 3 are the closest, while stage 4 is the
most distant.

In order to demonstrate that network analysis benefits from
this data augmentation process without generating artifacts, we
have included an analysis based on simulated data in the sup-
plementary materials. We used AIC criterion for model selection,
and found that �1 = 0.7 and �2 = 0.025 gives the best fitted
model to our data. We investigated the structural differences
of the learned models for each cancer stage and explained the
functional roles by enrichment analysis. The GRN models for
each cancer stage are learned together with normal samples. We
hypothesized that GRN model for different cancer stages should
not deviate much from the GRN for normal condition. Figure 3a
shows the numbers of edges in each subset and their intersec-
tions. The large number of common edges in the intersection of
all GRNs verifies our hypothesis.

Complex biological networks exhibit some non-trivial
statistical properties. In the undirected graphs, the degree of
a vertex v, d(v), shows the number of neighbors of vertex v.
A degree distribution is homogeneous if most of the degree
values are close to the average such as Gaussian distribution.
On the contrary, a degree distribution is heterogeneous, if most
of the nodes have a low degree and a few of the nodes have a
very high degree such as power law or exponential distribution.
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Figure 3. (A) Venn Diagram of the numbers of edges detected in each respective graphical models across normal and cancer stages 1–4. (B) Venn Diagram of the stage-

specific miRNAs across four cancer stages. The networks show interactions that are specific to (C) Stage 1, (D) Stage 2, (E) Stage 3 and (F) Stage 4. The red nodes in the

network represent genes and the blue nodes represent miRNAs. The nodes are arranged in the same order in each network.
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Figure 4. Enriched functional groups in different cancer stages based on enrichment analysis (A) on GO Biological Process, (B) and KEGG pathways. D: down-regulated;

U:up-regulated.

It has been shown that metabolic, protein and gene interaction
networks exhibit characteristics of scale-free networks that have
heterogeneous degree distribution [53]. The ubiquity myth about
scale-free networks still remain controversial. Therefore, we
also tested the degree distribution of our final model against

those similar to power-law distribution. We showed the degree
distribution of our model restricted to vertices of lncRNA,
miRNA and protein coding genes in Supplementary Figure
2, see Supplementary Data available online at http://bib.oxfo
rdjournals.org/. In order to compare two distributions against

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab270#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 5. Enriched functional pathways that are mediated by stage-specific significant miRNAs across different cancer stages.

one another, we compute the likelihood of given data under
the two competing distributions. If the likelihood-ratio test
is positive, the first distribution is a better fit, otherwise the
second. In order to check test significance, we used Vuong’s
method which gives a p-value that shows if the test conclusion

is significant or not [54]. Based on the likelihood-ratio test,
we found that degree distribution of lncRNAs and protein
coding genes follows a stretched exponential distribution,
and the degree distribution of miRNAs follows a truncated
power-law distribution. This suggests that scale-free networks
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are a consequence of preferential attachment process which
induces a rich-gets-richer phenomenon. Furthermore, the
power-law distribution is plausible for miRNAs due to the fact
that miRNAs can bind to several genes. The degree distribution
related to lncRNA can be biased because only a limited number
of lncRNAs have been curated in the literature and included in
this study. It is interesting to see when we performed a goodness-
of-fit test based on a list of 1518 interactions reported in
lncrna2target [55], the degree distribution also follows stretched
exponential distribution.

Functional changes revealed by gene expression and
gene-gene interactions across different cancer stages

Functional enrichment and ontology analysis are useful to
explain important functions of genes of interest. Genes that
have similar expression patterns are more likely to play a role
in the same functions. We applied GMM clustering to get similar
gene expression profiles in our clusters. A grid search of different
priors and number of clusters is performed to find best cluster-
ing scheme for the data. The lowest BIC score was obtained
for diagonal covariance matrix and 17 clusters. Disruptions in
cancerous cells cause over proliferation and failure to control cell
growth, division and migration. Given many of these disruptions
are associated with cell signaling pathways, we applied the SPIA
analysis into clusters of gene expressions in order to get a bird’s-
eye view of enriched signaling pathways. From the results of
SPIA analysis, we deduced important activated and inhibited
signaling pathways listed in Tables 1 and 2.

Next, we applied Kyoto Encyclopedia of Genes and Genomes
(KEGG) and GO enrichment analysis to discover structural differ-
ences across cancer stages. Genes that were common in interac-
tions across stages were omitted from gene list for the enrich-
ment analysis. For example, in the case that gene A and gene B
interact only in stage 1, gene A and gene C interact only in stage
2, we include gene B for stage 1 analysis and gene C for stage
2 analysis, omitting gene A from both. In Figure 4, we showed
significant functions enriched in more advanced stage during
cancer progression, reflected by the structural alteration of GRNs
by using dotplot functionality of clusterProfiler R package [56].
For example, KEGG-annotated cell cycle pathway (hsa04110) is
the most highly activated process in the stage 1 cancer group.
When entering into stage 2, a few signalling pathways such
as PI3K-Akt (hsa04151) and cGMP-PKG (hsa04022), and process
related to focal adhesion (hsa04510), vascular smooth muscle
contraction (hsa04270) and lipolysis regulation in adipocytes
(hsa04923) appear to be suppressed. In the advanced stages
of cancer, stage 3 and 4, more signaling and metabolic pro-
cesses were altered with significantly activated cell cycle, oocyte
meiosis, DNA replication and p53 signaling. In the meantime,
the complemented GO-enrichment analysis provides additional
biological processes altered during cancer progression from a
slightly different perspective. This analysis provides us a better
view of the functional transition when breast cancer progresses
from early to more advanced stages.

Functional long non-coding RNAs

With the growth of interactome data derived by emerging
sequencing technologies, it is highly compelling to integrate
new types of molecular interactions, e.g. between miRNAs
and non-coding RNAs such as circular RNAs, and mRNAs and
lncRNAs, into the network through a robust system. In this
study, we demonstrated how our model can facilitate new
discoveries of new functions of those interactions. For example,

the lncRNAs, a type of non-coding RNAs whose length are
longer than 200 nucleotides, are known to play an important
role in human complex diseases [57], but the annotation
about disease associations is far from complete [58]. Unknown
disease associations of lncRNAs can be uncovered by functional
analysis of dependency relations of a given lncRNA. We verified
this method on the example of TPT1-AS1. A known disease
association of TPT1-AS1 is malignant glioma [59]. The cancerous
breast tissue is known to be one of the primary origins of glioma
[60]. A widely used practice to identify risk variants is to look
in the genomic proximity of known factors, which, however,
is argued to be misleading [61]. We used the reconstructed
dependency relationships in our network model to find
associated diseases for understudied molecules such as TPT1-
AS1. Our analysis suggested the enrichment of glioblastoma
multiforme which is a subtype of malignant glioma. Particularly,
we used Schriml et al. [62]’s disease ontology method to provide
associations between biomedical data and human diseases.
The DOSE package was used to perform disease enrichment
analysis for lncRNAs [63]. The significance was evaluated based
on hypergeometric test and the expected false positives in a
multiple hypothesis setting were adjusted using Benjamini–
Hochberg method. Following the same methodology, we found
the following enriched disease-lncRNA pairs: GATA3-AS1 and
(DOID:2449) acromegaly; PVT1 and (DOID:299) adenocarcinoma;
LINC00987 and (DOID:3355) fibrosarcoma, (DOID:8791) breast
carcinoma in situ and (DOID:8719) in situ carcinoma. Note that
with particular interest in lncRNA, one can follow the same BN
based binding network analysis presented in this study by taking
into consideration of experimental lncRNA-mRNAs interactions
as priors to infer lncRNA interactions and assess the functions,
which might generate more interesting result.

Functional changes revealed by miRNA-gene
interactions across different cancer stages

Additionally, we found 617 miRNAs that have have interactions
with identified DEGs according to starBase [2]; 20 441 out of
166 669 reported binding interactions make significant group
difference by using entropic Gromov–Wasserstein probabilistic
distance metric. The average degree of significant miRNAs is
217. The degree distribution of miRNAs marked as significant
is shown in Supplementary Figure 3, see Supplementary Data
available online at http://bib.oxfordjournals.org/. We consider
the miRNAs with smaller degrees (less than 50) to be particu-
larly important. This is because when an miRNA with a high
degree is excluded from the dataset, many potentially important
dependents are also taken off from the analysis which leads
to a greater difference from the baseline. miRNAs with degrees
in top-20% are: hsa-miR-129-5p, miR-140-3p, miR-146b-5p, miR-
188-5p, miR-193a-5p, miR-28, miR-346, miR-3605-3p, miR-361,
miR-455-5p, miR-671-3p, miR-320b, miR-193a-3p, miR-326, miR-
330 and miR-501-3p.

We assessed miRNA functional roles as cancer progresses
by increasing the miRNA analysis resolution to stage specific
level. Stage-specific miRNA-gene interactions are examined in
cancer versus normal samples to find sets of miRNAs that
significantly change gene expression probability distributions
from the baseline normal. In Figure 3b, we show the number of
miRNAs that belongs to each subset. It is observed that when
the cancer progressed to stage 4, stage specific miRNA activity
has diminished which conforms to our beliefs that miRNAs play
important roles in key steps towards cancer development; till a
very advanced stage, cancer may have evolved by gaining new
emergent regulatory mechanisms. We observe the most stage

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab270#supplementary-data
http://bib.oxfordjournals.org/
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Figure 6. (A) The performance on 10-time repeated 5-fold cross validation for 10 different trials of two input 1D CNN model. For each trial, we feed different (gene,

miRNA) pairs to model as input. The error bars show the 95% CI. (B) Performance conformance analysis shown between model performance and distribution of

correlation and MFE values. The absolute value of quantization is used. Depth axis shows the counts in log2. The correlation does not directly indicate the binding

mechanism but the complexes with lower energies are often more stable. The performance on (C) ROC. (D) Precision-recall (PR) curves for held out test set, where the

red dashed lines show the expected performance if there is no learning achieved in the model, while the blue lines follow the performance of ROC and PR curves. The

filled with violet area is an area under the curve.

specific miRNA activities in stages 1 and 3 which may lead to
transitioning into the next phase.

We further perform a functional analysis on stage-specific
miRNAs. In Figure 5, we show the significant functional groups
while providing the detailed interactions on http://sbbi-panda.u
nl.edu/pin/pages-output/mirna/.

In stage 1, we see enrichment in vascular smooth mus-
cle contraction, signaling pathways regulating pluripotency of
stem cells, progesterone-mediated oocyte maturation, longevity
regulating pathway, growth hormone synthesis, secretion and
action, fatty acid degradation/biosynthesis, choline metabolism
in cancer, calcium signaling pathway and apoptosis which are

http://sbbi-panda.unl.edu/pin/pages-output/mirna/
http://sbbi-panda.unl.edu/pin/pages-output/mirna/
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Table 3. Performance of our supervised DL method for predicting
significant miRNA-gene binding interactions found by our unsuper-
vised network-based method for all cancer stages

Stage Number of Significant
Interactions

Supervised Method
Accuracy

Stage 1 10 897 0.841
Stage 2 7267 0.925
Stage 3 12 421 0.815
Stage 4 58 0

enriched in stage 1 only. These pathways are highly related to the
development and initiation. In stage 2, transcriptional misregu-
lation in cancer, Th1 and Th2 cell differentiation, Ras signaling
pathway, parathyroid hormone synthesis, secretion and action,
PPAR signaling pathway, JAK-STAT signaling pathway, Hedgehog
signaling pathway, HIF-1 signaling pathway and ECM-receptor
interaction are enriched. These enriched pathways are related
to mis-regulation and important known cancer signaling pro-
cesses. In stage 3, Wnt signaling pathway, phosphatidylinositol
signaling system and FoxO signaling pathway are enriched. Wnt
and FoxO signaling pathways are shown to be associated with
metastasis [64, 65].

Stage-associated miRNA-gene interactions
inferred by CNN model

Based on the cross validation test, the CNN model has demon-
strated promising prediction power on conditional miRNA-
mRNA interactions. In Figure 6a, we show average test accuracies
for 10 different trials. Error bars show 95% confidence interval
(CI) over 1000 bootstraps. Accuracies fall into range between 80
and 90% in all 10 trials.

Previously, Yuan and Bar-Joseph [66] proposed a 2D CNN
model based on 2D histograms. 2D histograms can be used to
compare multidimensional factors in multidimensional tensors.
We followed their architecture and training procedure, and got
∼ 53% testing accuracy. Our proposed 1D CNN model outper-
formed Yuan and Bar-Joseph [66]’s model by a wide margin.
Additionally, we test our 1D CNN model with a held out test set to
further assess its performance. We achieved ∼ 95.795% accuracy
with 1089 true negative, 11 false positive, 88 false negative and
1166 true positive. In Figure 6C and D, we plot receiver operating
characteristic (ROC) and precision-recall curves for this test set.

We conducted performance and conformance analysis to
investigate the vaguely known role of correlation and minimum
free energy (MFE) on gene and miRNA binding mechanism. We
used absolute value of quantization to discretize the correlation
and MFE values to quartiles, and we checked the overlap of
prediction result sets with each quartiles. As we can see in
Figure 6b, low correlation and unstable energy values fall into
lower halves of the quartiles, and there is no linear relationship
between correlation and binding relationship, but the lower the
energy values, the more stable the complex.

We also compare the predictions of our unsupervised method
based on a probabilistic distance metric and supervised method
based on a 1D CNN model for all cancer stages. In Table 3, we
showed number of significant miRNA-gene binding interactions
reported in the literature by predictions algorithms and CLIP/-
CLASH experiments by our unsupervised method, and accuracy
of our supervised method for predicting these interactions for
stages 1–3.

Furthermore, we projected learned features of genes and
miRNAs in lower dimensional space with t-SNE method to inter-
pret molecular structural characteristics of genes and miRNAs
seen in our CNN-based model shown in Supplementary Figure
4, see Supplementary Data available online at http://bib.oxfo
rdjournals.org/. We observed that genes’ features show similar
traits; however, miRNAs are highly dispersed and erratic. This
may indicate miRNAs tend to have different properties in terms
of expression and binding interactions in general, while genes
that appear close together may have similar those properties
in breast caner that are partially resulted by regulations among
genes.

Conclusion
In this study, we present a systematic solution that can effec-
tively identify miRNA binding by genomics-based modeling on
context-dependent GRNs. In addition to common issues on this
topic such as data fusion, we also design new strategies for
addressing multiple other challenges such as model fusion and
functional network comparison. We believe that it is the refine-
ment on each of those key components that eventually leads to
a better model. Particularly, gene and miRNA binding networks
were inferred based on sequencing-derived expression data and
interaction information. Data augmentation was performed to
reduce statistical bias for our learner given the imbalanced
numbers of samples in normal and different cancer stages.
Specifically, we used the entropic Gromov–Wasserstein proba-
bilistic distance metric to measure the effects of each miRNA-
gene binding interaction and observed about 1/8 of the reported
interactions contribute to significant difference in breast cancer
versus control. Functional analysis based on obtained graphic
models reveals important signaling processes involving miRNAs
and other types of non-coding RNAs during cancer progression.
Last, we proposed an unsupervised learning model to iden-
tify conditional miRNA-gene binding relationship, which has
obtained a good performance. Learned features of genes and
miRNAs from our model are visualized to interpret their charac-
teristics. The major contribution of this study is the presentation
of an integrative network learner that can merge continuous
and discrete data models, and supports queries on variables of
interest for interaction predictions, which can be generalized for
similar applications in biomedical research.

Key Points
• Computational modeling of gene regulation networks

remains a challenging task because of the complex
interplay among different gene regulatory mecha-
nisms, as well as the dynamic nature of interactions
required in chaotic systems like cancers.

• Given the current challenges in handling network
complexity and scalability, we have presented a new
integrative learning framework that addresses the
model fusion and heterogeneous data integration.

• As one major contribution of this study, the newly
presented network learner can merge continuous and
discrete data models and supports queries on vari-
ables of interest for interaction predictions, which can
be generalized for similar applications in biomedical
research.

• With a particular focus on microRNA regulation, this
study has identified microRNA mediated regulations

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab270#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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associated with different progressive stages of cancer,
which can provide new insights in cancer biology and
potentially provide new targets for cancer manage-
ment.

• Additionally, deep learning has shown promising per-
formance in identifying context-dependent interac-
tions based on both gene and microRNA profiles, as
demonstrated by a CNN-based deep learning model
developed in this study.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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