ARTIFICIAL INTELLIGENCE (AI)
and Machine Learning (ML) are weaving
their way into the fabric of society, where
they are playing a crucial role in numer-
ous facets of our lives. As we witness the
increased deployment of AI and ML in
various types of devices, we benefit from
their use into energy-efficient algorithms
for low powered devices. In this paper,
we investigate a scale and medium that is
far smaller than conventional devices as
we move towards molecular systems that
can be utilized to perform machine learn-
ing functions, i.c., Molecular Machine
Learning (MML). Fundamental to the
operation of MML is the transport, pro-
cessing, and interpretation of information
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propagated by molecules through chem-
ical reactions. We begin by reviewing
the current approaches that have been
developed for MML, before we move
towards potential new directions that
rely on gene regulatory networks inside
biological organisms, as well as their pop-
ulation interactions to create neural net-
works. We then investigate mechanisms
for training machine learning structures
in biological cells based on calcium sig-
naling and demonstrate their application
to build an Analog to Digital Convert-
er (ADC). Lastly, we look at potential
future directions, as well as challenges
that this area could solve.

INTRODUCTION

In resent years, we have started to wit-
ness the widespread development of sys-
tems to apply Artificial Intelligence (AI)
and Machine Learning (ML) to very
diverse application scenarios [1]. This has
resulted in software-based systems for
Al such as Artificial Neural Networks
(ANN) [2], as well as hardware based
systems like neuromorphic hardware [3].
In particular, within the area of ANN,
various algorithms have been developed,
that includes Recurrent Neural Networks
(RNN), Convolutional Neural Net-
works (CNN), amongst others, where
cach has its own properties and behav-
iour derived from specific functions of
neuronal networks of the brain. While
developments have been made in Al for
both hardware and software, there is
still a number of challenges that exists.
These challenges include the ability to
mimic the behavior and realism of neu-
rons and their internal functionalities,
as well as matching their energy require-
ments. The former challenge is still today
a major issue that continues to motivate
research to ensure that new algorithms
or hardware designs will resemble the
properties of internal neuronal signaling
(e.g., ion transfer, action potential gen-
eration and propagation). However, the
more realistic we design Al algorithms
to closely resemble neuronal cells, the
higher the energy consumption since we
are mimicking the chemical and molecu-
lar reactions that occurs internally. When
making this comparison, the brain con-
sumes approximately 20 W for 100 bil-

lion neurons and 1,000 trillion synapses
compared to a neuromorphic processor
such as the Neurogrid with 65 thousand
neurons and 500 M synapses, which con-
sumes 3.1W [4]. In order to minimize
energy consumptions, alternative materi-
als have also been proposed for artificial
neural systems and one example is the
use of spintronics [5].

A number of alternative solutions
have also been proposed to mimic natu-
ral neuron functions, where biological
neuronal cells have been used to perform
Al computing to replace conventional
computing systems, i.c., biological Al
Examples of this include living neurons
that can play pong [6], robots integrated
with neuronal cells to control their oper-
ation [7], control of a robotic arm [8],
and Organoid Intelligence Bio-comput-
ing [9]. This approach has also shown
that the neurons can also be taught and
trained to adapt to specific applications.
Besides neurons, other forms for biologi-
cal systems have also been considered to
perform computing functions. Examples
include the use of Physarum to solve net-
working problems at the Tokyo railway
network [10], and, most recently, the use
of fungii to perform molecular comput-
ing [11]. Using these approaches can
possibly result in new solutions where
biological cells work in tandem with
silicon technologies, i.e., bio-hybrid Al
While this may address the aforemen-
tioned challenges of including more real-
istic biological properties, protocols and
technologies to maintain biological cell
lines and keeping them alive for a long
period may also invalidate the quest for
higher efficiency of these systems.

Fundamental to all biological Al
solutions and models that have been
proposed is the exchange of molecules
between cells to realize computing func-
tions. This communication based on
molecules occurs as both an intra, as well
as inter-cellular signaling. However, the
training and computing processes within
these systems can be further enhanced
through modeling, optimization, and
engineering of these same processes,
with the help of molecular commu-
nication theory. As this field is slowly
maturing, models and systems have
been developed to study and engineer

information encoding into molecules
to be exchanged between different bio-
logical or bio-hybrid entities, also called
bio-nanomachines, such as the afore-
mentioned Al-enabling cells. Examples
include characterizations of channels
within biological environments [15],
[16], [17], [18] and molecular modula-
tion techniques (e.g., MoSK [19]). These
new communication models have been
applied to characterize and engineer
numerous types of molecular communi-
cation systems such as neuronal intercon-
nections [20], multi-hop diffusion-based
networks [21], and large scale systems
with 3D geometry [22]. Test beds and
proofs-of-concept have also been devel-
oped, including table top molecular
communication systems [23], as well as
molecular modulators that transmit digi-
tal information between computers [24].
The engineering of molecular communi-
cation systems in biological or bio-hybrid
Al systems can enable new design, as well
as efficiency and robustness. This may
include the design of engineered mol-
ecules to propagate information during
gene expression leading to intra-cellular
signaling, as well as inter-cellular signal-
ing that can support ANN functional-
ities between populations of cells. This
can be achieve through the combination
of molecular communication theory and
the tools provided by synthetic biology,
where genetic circuits are engineered to
produce molecular signals communicat-
ed between cells.

In this article, we will analyze a num-
ber of different biological AI and the
types of communication that is inherent
in the models, i.e., Molecular Machine
Learning (MML). MML in here intend-
ed as machine learning realized with
molecules and chemical reactions as
building blocks, rather than computer
programs to inform synthetic chemis-
try, as in [25]. This includes engineered
cells to create perceptrons found in ANN
or interconnecting engineered cells to
behave as neural networks. We will then
follow with alternative future directions
for developing ANN using the concepts
of molecular communication theory
through the natural Gene Regulatory
Networks (GRN), molecular communi-
cation between multi-species population
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FIGURE 1 Proposed solutions to develop neural networks from engineering cells. (a) Bactoneuron [12], (b) Perceptgene [13], and (c) metabolic

perceptron [14].

of cells, as well as engineering of Ca%*
signaling based molecular communi-
cations to create an Analog-to-Digital
Converter (ADC). Lastly we will focus
on future challenges for MML.

This article is organized as follows.
Section 2 discusses current background
on engineered cells as well as metabolic
reaction models to realize ANN. In Sec-
tion 3, we propose a new direction where-
by natural GRNs and their embedded
intracellular molecular communication
for AL In Section 4, we introduce an idea
for utilizing a multi-species cellular con-
sortia to perform Al using inter-cellular
molecular communication. In Section 5,
we move towards engineering calcium
(Ca2*) signaling in cells to achieve per-
ceptron like behavior. In Section 6,
we discuss future directions and chal-
lenges, while in Section 7, we conclude
the paper.

CURRENT BACKGROUND
ON BIOLOGICAL Al

Numerous research has indicated nat-
ural intelligence that occurs within
cells. From the perspective of molecu-
lar communications, this deals with ini-
tially sensing molecular signals from the
environment, followed by internal signal
transduction that leads to gene expres-
sions, as well as corresponding metabolic
pathways. This process is largely pro-
grammed into the cell’s genome [26].
In certain cases, this intelligence and
memory management can be performed
with organisms that lack a brain, or non-
neuronal systems as pointed out in [27].
In the case of bacteria, claims have been
made the microbes contain minimal
cognition’ [28].

In [12], a single layer ANN was devel-
oped using engineered E.Colz, known as
Bactoneuron (Figure 1(a)). The devel-
oped model is able to achieve both
reversible as well as irreversible comput-
ing. Each cell is engineered to receive
inter-cellular diffusing molecules, and
as a response, execute a log-sigmoid
activation function to produce Green
Fluorescent Protein (GFP) output. This
execution is established through a tran-
scriptional regulation which is under-
taken by an engineered genetic circuit
(also referred to as cellular device). The
solution proposed uses established set of
general rules to map the complete ANN
architecture and to derive unit bactoneu-
rons directly from the functional truth
table of a complex computing function.
The study produced both simulations, as
well as experimental validation. Example
applications included a 2-to-4 decoder,
a 4-to-2-priority encoder, a majority
function, a 1-to-2 de-multiplexer, and a
2-to-1 multiplexer and reversible logic
mapping through Feynman and Fred-
kin gates. Rizik et al. [13] developed
the Perceptgene (Figure 1(b)), which is
a perceptron model of an ANN. This
was achieved through the genetic circuit
engineering in E. Cols bacteria. The per-
ceptron behavior is established through
a logarithmic input-output relationship
that fits to the non-linear biochemi-
cal reactions that occur in the genetic
circuits. The implementation is based
on engineered genetic circuits whose
input-output behavior includes both
the power-law, as well as a multiplica-
tion function. The power-law function
encodes the weighted chemical inputs,
while the multiplication function aggre-

gates all the inputs that will determine
the activation. The weight of each input
is determined by the Hill coefficient.
The two inputs used are isopropyl Beta-
D-I-thiogalactopyranoside (IPTG) and
anhydrotetracycline (aTt) molecular sig-
nals and results in a repression process
that in turn regulates their own produc-
tion using an auto-negative feedback
loop. Similar to the perceptrons of an
ANN, the perceptgene also contains a
bias component for the sigmoidal acti-
vation function. The bias input is set by
the ratio of the maximum transcription
process to the binding affinities of the
protein-protein/protein-DNA reactions.
The applications of the perceptgene
include weighted multi-input functions,
classification, as well as an oftline gradi-
ent descent learning algorithms. In [28],
an oftline trained perceptron neural net-
work is used to program a population
of bacteria, and it is simulated i silico.
Through the diffusion of inter-cellular
molecular communication within a pop-
ulation, the cells were able to have social
interactions and form complex commu-
nities. The programmed perceptron was
also used to solve an optimization prob-
lem. The work was based on an in-silico
model, where the plasmid encoded per-
ceptron was designed using Cello, while
the simulation of the bacterial com-
munication was developed through the
Gro simulation tool. A particular aspect
of the study is the use of programmed
ANN into the genetic circuit to control
signaling between cells in the popula-
tion to perform functions. The input are
natural molecules (e.g., galactose), which
in turn control a downstream behavior.
This includes (i) emitting molecular
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signals proportional to the concentration
of oxygen that is used for metabolic pur-
poses, (ii) inducing chemotaxis for cell
movement, (iii) commensalism, where
the cells emit a signal that degrades the
waste products from other bacteria in the
population, and (iv) controlling of cell
growth when the environment is harsh.

In [29], a consortia-based bacterial
ANN was developed and proved experi-
mentally. An interesting feedback pro-
cess is developed between the receiver
and the sender, which are the percep-
tron nodes for decision making and this
is achieved using quorum sensing. The
sender bacteria are able to emit varying
molecular signals (OHCI4 - acyl-homo-
sevine lactone 30HCI4:1-HSL), which
represent the weights. These molecu-
lar signals are induced by an external
signal  (OC6  (acyl-homoserine  lactone
30C6-HSL)). The application was spe-
cific to 4-bit pattern recognition, where
varying levels of the OC6 inducers are
applied to sender bacterial populations,
and once the molecular signals diffuse to
the receiver, they will activate a genetic
circuit to produce an output signal. A
novel gradient descent algorithm was
also developed to optimize the weights
of molecular signals to suit the pattern
recognition application.

A cell-free perceptron model was pro-
posed in [14] using the metabolic circuit
illustrated in Figure 1(c). The latter was
designed with a focus on biochemical
retrosynthesis to predict the pathways,
which was achieved using the Retro-
path and Sensipath computational design
tools. The circuit was then embedded
into a cell-free system in order to create
the Metabolic Perceptron. The metabol-
ic perceptron was able to perform binary
classification based on metabolite molec-
ular signals that leads to a classification
process. The example application was
here a four-input binary classifier.

GENETIC REGULATORY Al

While the previous section focused on
the genetic engineering of living cells to
create machine learning systems, in this
section, we will look at an alternative
approach that is based on computing
structures naturally present in biological
cells, i.e., GRNs. This approach is based

on essential similarities between a GRN
and its structure to an ANN. While a
number of different works have investi-
gated neural-like properties in GRNs,
our investigation focuses on how molec-
ular communication properties can be
exploited to perform computing func-
tions as well as training by externally
manipulating the weight connections
between gene relationships.

BACKGROUND ON GENE
REGULATORY NETWORKS

A GRN is a highly complex network of
multi-layered interactions between genes.
Each individual cell carries a GRN spe-
cific to its species and strain, giving an
unique behavioral pattern, as well as
functionalities. A cell can sense a range
of external stimuli using membrane
receptors, perform computing through
the GRN and express genes accordingly,
thus resembling an input-process-output
sequence found in conventional comput-
ing. A typical process of gene expression
starts with the transcription process of
converting the genes into mRNA, and
this, depending on the gene, can be fol-
lowed by the translation process that
coverts the information contained in
the mRNA into proteins. However, dur-
ing gene expression within the GRN,
molecular communication patterns can
be identified in gene-gene interactions,
which are complex processes that occur
at multiple layers. For example, while
these interactions in prokaryotes con-
tribute to the regulation of the afore-
mentioned transcription process, for
cukaryotes, they can be post-transcrip-
tional, i.e., contributing to, among other
things, mRNA (or other transcript) and/
or protein functionalities.

Moreover, the regulation in the post-
transcription layer contributes to specific
dynamics in the behavior of GNRs. In
this context, proteins plays a crucial role
complementing the regulation mecha-
nism by integrating sensing, transfer,
storage, and processing of information.
As an example, proteins can perform
computational tasks such as amplifica-
tion, Boolean logic functions, and infor-
mation storage through mechanisms of
allosteric regulation [30]. In addition,
the inter-conversions between phosphor-

ylated and non-phosphorylated states of
proteins act as switches enabling them to
exhibit sigmoidal behaviours over a lim-
ited concentration range.

In the following, we show how these
complex molecular signaling processes
that involve multiple layers of chemical
reactions, as well as components during
gene expressions, combined with the
network structure of genome relation-
ships, can allow us to identify and exploit
natural ANN within GRNG, i.e., Genetic
Regulatory AT (GRAI).

ANN LEARNING AND TRAINING
MODELS IN A SIMPLE GENE
REGULATORY NETWORK

The transcription of a particular gene
in a GRN is combinatorial action of
products of other genes, as well as its
own. Subsequently, the state of the cell
is an action based on a combination of
diverse translated gene products. When
we observe these properties, we see a
resemblance to the dynamics of an ANN,
specifically a Recurrent Neural Network
(RNN), where the current state depends
on the previous. This means that there is
a potential to create MML from manipu-
lating the gene expression patterns.

To describe our concept, we will
focus on a simple communication pat-
tern found in the GRN of a bacterial
cell. Bacteria uses signal transduction
pathways to sense the environment by
processing input signals. Tiwo-Component
Systems (TCS) are among the most wide-
spread signal transduction mechanisms,
which contain a Sensor Histidine Kinase
(SHK) that receives external signals and
aresponse regulator that accordingly ini-
tiates the expression of a set of genes. On
average, a bacterial cell contains 30 TCSs
that are essential for their virulence,
growth, and survival. Approximately
87% of the known response regulators
of TCS involve gene expression regula-
tion at the transcription layer. Based on
this, 96% of SHKs are capable of sensing
small-molecule-binding from the extra-
cellular space. Hence, the combination
of TCSs can be considered a viable exam-
ple of a natural GRN pattern that can be
modeled and characterized as an ANN,
where the input layer is represented by
the SHKs, and multiple hidden layers as
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FIGURE 2 lllustration of inherited GRAI where (a) shows the extr%ction of a subnetwork that resembles an ANN with relative weights, (b) set of
relative weights in one environment condition (temperature at 37 C), and (c) modified weight in a different environment condition (temperature

at 30°C).

well as an output layer consist of genes
There
are several advantages in using the TCS
sub-network of the GRN as an ANN
for MML. This includes availability of
experimental data that offer validation

and their mutual interactions.

and quantification of the relationships
between gene expressions for both input
and output layers. In a number of cases,
the direct mapping of a GRN sub-net-
The
reason is because sometimes the num-

work to an ANN is not feasible.

ber of gene interactions (network hops)
from the input layer to the output layer
can vary for different gene expression
paths, resulting in the corresponding
ANN to be asymmetric, which leads to
less computational efficiency. There are
well-known approaches to address this
problem, such as introducing phantom
nodes that do not alter the overall behav-
ior or treat the network as asymmetric
ANN structure. Another alternative is
to introduce missing gene interactions
through engineered genetic circuits,
which can further align the sub-network
closer to a typical ANN structure.
Figure 2 illustrates how we recognize
an ANN structure from a TCS sub-net-
work of a GRN. As shown in the figure,
the cell is able to combine multiple input
signals and accordingly express down-
stream genes through the network. Gene
expression products from one gene reach
the non-coding region of another via

intra-cellular diffusion [31]. The relation-
ship of genes to be expressed in the net-
work can be associated to a set of weights.
The values of the weights are a result of
several factors that include the transcrip-
tion factors, affinity of the transcription
factor binding site, thermoregulation,
enhancers [32], as well as the noise due to
the diffusive motion of regulatory mol-
ecules [33], [34]. Here, we focus mainly
on two TCSs: PhoB-PhoR and BgsR-BgsS
systems, which are associated with phos-
phate and iron uptake of the P. aeruginosa
species. Further, we target the inter-cellu-
lar molecular communications by consid-
ering three QS systems, namely, Las, Rbl,
and PQS genes where Las uses 30-C12-
HSL and Rl uses C4-HSL, while the
POS relies on 2-hepryl-3-hydroxy-4(1H)-
quinolone. To identify the correspond-
ing ANN structure, we first modeled the
GRNs as graphs using the interaction
structural data from publicly available
database [35]. This is followed by extract-
ing the TCS sub-network related to the
phosphate intakes iron along with the
quorum sensing process. The obtained
ANN model contains various numbers
of hops from the input layer to the out-
put layer, which require the introduction
of phantom nodes that do not have an
impact on the interaction dynamics of
the network. The weights of the ANN
represented by the TCS are estimated
relatively using the interaction dynamics,

as well as transcriptomic data [36], [37].
The performance accuracy of this model
is then evaluated based the pyocyanin
production and gene expression levels in
low and high phosphate conditions with
the data from wet-lab experiments in sim-
ilar setups [38].

A typical ANN will require modifica-
tion of weights as it is being trained to
serve for a specific purpose. Here, we
investigated how the weights of the ANN
related to the TCS can be changed with
a specific focus on changes that can be
operated externally to the biological cell
from the environment. Previous research
has demonstrated how the temperature
can impact the cellular functions of P.
aeruginosn. This usually results in the
modulation of one specific gene expres-
sion interaction of the RA/ QS sys-
tem [32]. As highlighted in Figure 2(b),
with the reception of C4-RAIR at 37°C
temperature, the weight of hn2l - vhIR
is significantly higher compared to the
same at 30°C, as shown in Figure 2(c).
This corresponds to a higher expression
rate of RAIR at 37°C. This demonstrates
that updating and training of GRAISs is
possible through changes in the environ-
mental conditions such as temperature.

MINING ANN IN GRNS

Our previous section has shown that cer-
tain sub-networks of the GRN exhibit
natural neural networks. In this section,
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FIGURE 3 Two fully-connected ANN sub-networks extracted from the full GRN is shown in (a) and
number of different sub-network structures that can extracted from the GRN is illustrated in (b).

we want to investigate if other sub-net-
works that exhibit ANN structures can
be extracted from the GRN. We per-
form this through a search algorithm
that mines the GRN for specific types
of structures. During the search process,
if we need a structure with 7 number
of input nodes and j number of output
nodes, the algorithm first mines j num-
ber of nodes that have a common prede-
cessor. The j number of nodes will have
a number of different predecessors and
will be put together into the same group.
Within the same group, the nodes will
be put together to create different com-
bination, where the combinations must
have 7 number of input nodes that re the
predecessor, as well as j output nodes.
These combination will reflect the dif-
ferent number of sub-network for nodes
input nodes 7 and output nodes j.

Figure 3(a) illustrates examples of

a Feed-Forward neural network with

different structures of fully connected
ANN sub-networks extracted from the
GRN. Figure 3(b) shows the number of
perceptron and Feed-Forward neural net-
work structures we obtained from the
GRN using our mining algorithm. We
are able to discover a significant number
of perceptron structures with the high-
est recorded for one output node and two
input nodes. As we increase the number
of inputs, the number of fully connected
Feed-Forward networks becomes harder
to discover. In particular, Feed-Forward
networks with five output nodes and high-
er than three input nodes are very rare.
Since these Feed-Forward neural
networks are pre-trained with defined
weights, the question now rises as to how
we can use this for applications. One
approach towards using the ANN found
in the GRN is to match it to an appli-
cation’s requirement. This will require
a mining algorithm that matches the

problems that require an ANN with the
same structure as well as weight combi-
nation. While this can create challenges
in terms of finding the right problem to
suit the ANN found in a GRN, there is
an opportunity to engineer the circuit
with addition of genes that will increase
the diversity of the network, as well as
integrate hidden layers.

BACTERIAL MULTI-SPECIES
DIFFUSION-BASED NEURAL NETWORK

In this section, we look at an alternative
model for MML, where we investigate
how multiple species of bacteria with
symbiotic relationships, such as those
found in a bacteriome, i.c., bacteria liv-
ing in endosymbiosis with a host organ-
isms, can be modeled and exploited as an
ANN. In general, bacteria of the same
species receive specific types of molecu-
lar signals from other populations and
process them to produce a set of mol-
ecules that can influence other species
or host cells. These multi-species bacte-
rial populations can be considered the
nodes of a network, where the molecular
signals that diffuse between population
are the link/edges, based on diffusion-
based molecular communications. As
the molecular signal cascades through
the network from layer to layer, this
resembles a feed forward neural network
(layer in this instance are bacterial spe-
cies that receive the same type of signals).
The relationship structure of the bacteria
and signaling weights depend on fac-
tors such as the diversity of the species,
population sizes, cross-feeding/inter-
cellular communications and molecular
signal diffusion dynamics. The popula-
tion sizes determine the rate of molecular
signal reception and production, and this
reflects the weight of the edges of the
corresponding ANN model. If a larger
population produces a signal and another
population that has higher relative abun-
dance consumes that signal, the weight
corresponding to the link between these
larger populations will be modeled with
an ANN edge with a larger weight. On
the other hand, if the population sizes of
the two different species are smaller, the
interaction between them is compara-
tively weaker and will result in a smaller
weight value of the corresponding edge.
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FIGURE 4 lllustration of population-based ANN weight alteration and its impact on the network outputs is shown here, where (a) is the initial ANN
setup, (b) is the ANN with the preferred network weights, (c) is the convergence of weights of all the edges relative to the preferred ANN over the
transformation period, and (d) is the MSE behaviors of molecular production relative to the preferred ANN weights. Further, the output signal
behaviors due to variations in weights caused by network structural changes are shown in (e), (), and (g) by changing the population sizes

of Bacteroides, Alistipes, and Faecalibacterium, respectively.

One of the well-studied bacterial
ecosystems is the Human Gut Bacteri-
ome (HGB), which constitutes up to
1000 species [39], and it suggests a rel-
evant use case for the aforementioned
concept. The reliability of the molecular
signal flow between the different spe-
cies is vital in modeling and exploiting
the ecosystem as an ANN. In our pre-
vious study, the structural derivation
of a network of multi-bacterial spe-
cies using graph theory was analyzed,
where input of glucose is received by
certain species to produce various Short
Chain Fatty Acid (SCFA) communi-
cated between the cells [40]. The study
revealed that the weights of the edges,

which are the lactate and acetate signals
exchanged between the populations,
can be modified and adapted based on
external inputs (e.g., glucose). Using
this concept, we believe we could design
a Bacterial Multi-species ANN from
the SCFA molecular communication
network within the HGB. Figure 4(a)
illustrates an example of multi-species
bacteria population that are organized
into an ANN structure. The arrange-
ment of the structure is based on the
input-output relationship of molecular
production. For example, when input
glucose is consumed, it produces lactate
and two SCFA (acetate and proprion-
ate) by six species to produce butyrate

for other species, then the six species
will be the first layer of a corresponding
ANN of our NN, and the species that
produce butyrate will be the ANN’s sec-
ond layer. Figure 4(a) shows the ANN
with the relative weights of each edge
shown with different color shades. Our
aim is to train the ANN in Figure 4(a)
into an ANN with a specific functional-
ity, shown in Figure 4(b). Our training
is based on the external input of glucose,
where we can see in Figure 4(c) that as
the species are consuming and produc-
ing molecules, their weight is slowly
being modulated by changing the popu-
lation sizes see Figure 4(d) (as the Mean
Squared Error (MSE) of the population
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converges, similarly the molecular pro-
duction error). Further, we show how
significant the impact of the popula-
tion size variation is on the overall gut

metabolic performance by altering the
abundance of each species relative to a
healthy HGB composition. Figure 4(e)
shows the network outputs in terms of

acetate, propionate, and butyrate when
the abundance of Bacteroides is changed
from zero cells in the environment
to a population size of 200% as in the
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healthy HGB. Figure 4(f) and (g) pres-
ent the behaviors of the same outputs
when altering the population sizes of
Alistipes and Faecalibacterium, respec-
tively. These results indicate the pos-
sibility of altering weights of Bacterial
Multi-species ANN to modify the net-
work outputs significantly, which can be
used in applications such as personalized
treatment of metabolic disorders.

Ca?* SIGNALING PERCEPTRON
BASED ON MOLECULAR
COMMUNICATIONS

In this section, we discuss a perceptron
that can be trained by controlling the ion
flow as well as the basal reactions of Ca2*
Signaling between biological cells. As an
example, we demonstrate the design of
a multi-cell ADC realized by modulating
the cell’s Ca2* influx, as well as through
the engineering of genetic circuits.

CALCIUM SIGNALING

Communication through Ca2* ions is
one of the essential signaling processes
at the basis of numerous cell functions.
While a few mathematical models for
Ca2* signaling have been proposed, the
model by Korngren et al. for Ca2* ion
transients in electrically non-excitable
cells is one of the most recognized and
is at the basis of the concepts we present
in the following [41]. According to this
well-regarded model, this communica-
tion process is based on Ca?™* ion influx
into the cytoplasm from the extracellular
medium, where ion-conducting channels
are established through the membrane
and controlled by receptors. The recep-
tor in the model is designed in terms of
a linear activation instead of complicated
non-linear agonist binding curve [41].
As the influx of ions increases the Ca2*
signaling reaction is activated, where the
Ca?* ion pumps allow the outflow of
ions from the cytoplasm to the external
medium, as well as its store. Eventually,
the Ca2* ions concentration in the cyto-
plasm reaches a saturated level. Based
on this sequence of events, numerous
Ca?* signaling based molecular com-
munications systems, models, and their
characterization have been investigated
and proposed over the years [20], [42],
[43], [44].

OBTAINING A PERCEPTRON

FROM Ca®* SIGNALING

We adapt the Korngreen et al. model to
exploit a Ca* signaling system as a per-
ceptron. As illustrated in Figure 5(a), the
input ( x ) will be the Ca%* ion concen-
tration in the extracellular medium and
the weight () is the Ca2* ions influx
rate through the plasma membrane chan-
nels. Therefore, x * w represents the
amount of Ca2* ion influx ( y ) into the
cytoplasm, representing its transient. As
described earlier, the Ca?* ion transients
are multi-stage signaling processes that
involve the transition of ions within the
cytoplasm, store, buffer, as well as the
extracellular medium, and regulate the
concentration in the cytoplasm. In order
to train the Ca2* signaling process into
a perception, the cell needs to be the
incorporation of an engineered genet-
ic circuit to modify its basal fractional
activity to trigger the Ca?* signaling
reaction or to modulate the influx chan-
nel. In the case of a multiple-cell system
to realize an ANN multi-perceptron net-
work, the engineered genetic circuits are
required to enable dynamic activation
and deactivation of the Ca2* channel.

TWO-BIT ANALOG

TO DIGITAL CONVERTER
ARCHITECTURE

We adapted the Ca2* ion signaling
model to create interacting perceptrons
in multiple cells that altogether realize
a two-bit ADC through a simulation
model. The architecture of a conven-
tional ADC is illustrated in Figure 5(b).
The equivalent model based on Ca2*
signaling, where made clear the essential
role of ion flow between two cells (the
blue arrows in the Figure 5(c) indicate
Ca?* ions reactions to facilitate this).
The input x is the incoming extracel-
lular Ca2* concentration into the two
cells, where the range of input considered
in the simulation is set between 500u M
to 2500u M and sampled according to
an interval of 500u M. By dividing this
range into four intervals, each interval
will produce different Ca2* signals from
two cells, i.e., Cell 1 and Cell 2 , which
map to different digital bits. Based on
this, the Cell1 and Cell 2 produce
the Most Significant Bit (MSB) and the

least significant bit (LSB), respective-
ly. Ca?* ions in the extracellular medi-
um( x ) flow into the cytoplasm through
the Ca2* channel with an influx rate
wo and w; for Celll and Cell 2,
respectively. A bias to the Ca?* ions
influx for each of the two cells ( ¥y, ¥7)
is randomly selected and applied (in this
example this is §,=0.169255u M
and 4 =0.287264u M, respectively).
Through the Ca2* transients, the ion
concentrations in the cytoplasm that are
set to Cy and Cy, respectively. By set-
ting a threshold, in our case, 1u M, the
Ca®* concentration in the cytoplasm, can
be converted into digital bit ( Zy, Z; ),
which are the MSB and LSB. In order
to make an ADC, Cell1 is genetically
engineered to produce molecules when
enough Ca** ions (1p M) are present
in the cytoplasm. The output molecules
temporally deactivate the calcium chan-
nel in Cell 2 plasma. This deactivation
rate is indicated as .

TRAINING PROCESS

The flow chart for training the Ca2™ sig-
naling perceptron is presented in Figure
5(d). The two cells have to be trained
to obtain optimal Ca2* influx rates
(wg, wy) as well as the correct Cell 1’s
calcium channel deactivation rate for
Cell 2 (dy) so that Cell 1 and Cell 2 can
produce the aforementioned MSB and
LSB, respectively. Cell 1 is trained first
to find an optimal g, and then Cell 2
to obtain w; and 4. With initial w,
Ca2* flows into Cell 1 and is regulat-
ed in the cytoplasm (Cy) for a certain
period. Based on the amount of input
from the extracellular medium ( x ), the
concentration at saturation will represent
an MSB digital bit (Z;). When Zj, is bit
0, but the expected output is bit 1: an
activation chemical from the engineered
circuit is injected to elevate the basal
activity of the calcium channel in Cell 1
plasma. Due to the increased activity
of the channel, an increased amount of
Ca2* jons will flow into Cell 1, which
means the influx rate (wg) is also
increased. For the opposite case, when
Z is bit 1 and the expected value is bit
0, a different deactivation chemical signal
is expressed by the engineered genetic
circuit to reduce the basal activity of the
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Ca2* channel. Then, w is updated to
a lower value. Based on this sequential
training process, the optimal wy will
be found. The same training process is
performed on Cell 2, except for one case.
This exception case is when Z; and Z;
are bits 1, but the expected Z; is bit
0, which will require manual interven-
tion to modify the rate of Cell 1 output
chemical production instead of injecting
chemicals. Figure 5(¢) shows how the
perceptron behaves for different levels
of Ca?* within the cytoplasm based on
varying extracellular influx. Figure 5(f)
illustrates an example of convergence of
weight wq during training with respect
to the error for varying levels of extra-
cellular input (x). Finally, Figure 5(g)
shows the variations of output from
the two cells that represent digital bits
from Cell 1 and Cell 2. For example, an
input between 1000y M and 1500 M
results in 01, where the 0 b is from
Cell1 and 1 b is from Cell 2.

CHALLENGES

While we have identified solutions that
enable non-neural cells to develop percep-
tron properties, or the exploitation of gene
regulations to obtain ANN functional-
ities, there are still a number of challenges
that need to be addressed to move towards
practical applications in the future, and
some important ones are discussed next.

CONTROLLING MOLECULAR
COMMUNICATIONS IN MOLECULAR
MACHINE LEARNING

The MML that we have discussed so
far are based on training and comput-
ing operations that stem from com-
munications of molecules and chemical
reactions. To develop MML systems pro-
cesses matching the computational capa-
bilities of silicon-based technologies, we
will eventually need to consider multi-
layer perceptron architectures. While
the genetic engineering will possibly be
the main enabling technology, specific
challenges are as follows. First, since the
training of the edge weights of molecu-
lar signals, which in our case is based
on population control, a mechanism is
required to ensure that parallel chang-
es in the bacteriome can be performed
to modify the relative population of

different species/strains in the system.
This becomes more challenging when we
consider Ca?* signaling between cells
and in particular controlling the flow of
ions through the gap junction of cells.
Second, while GRAI might be inher-
ently including multi-layer perceptrons,
the question is how do we determine
appropriate chemical inputs to express
genes of the input nodes and, at the same
time, detect expressions on specific out-
put nodes. From a multi-bacterial species
perspective, this will require engineering
of cells with different receptors to detect
diverse molecular signals from the previ-
ous layers. The cells will, therefore, need
to have the ability to detect signals effi-
ciently and operate in noisy environments.
The other challenge is the ability to syn-
chronize all transmissions as signals prop-
agate between different layers. The latter
challenge can have an immense impact
on the reliability of the resulting ANN.
Since we have shown that multiple ANNs
are embedded in a GRN through a sub-
network, the question is whether mul-
tiple parallel processing can be achieved
through different gene expression paths.

BIO-HYBRID Al

The paradigm of the Internet of Bio-
Nano Things [45] includes the need to
interconnect molecular communication
systems to connect to the cyber-Internet
by propagating information between the
molecular and the electrical domains.
This can be realized through an elec-
tro-chemical based Bio-cyber interfaces.
While this can allow to detect chemical
outputs from the MML, an issue arises
when we want to actively interact and
reconfigure the MML system from the
electrical domain. In particular, the chal-
lenge lies in the mechanism to reconfig-
ure the weights.

RESPONSIBLE Al IN MOLECULAR
MACHINE LEARNING

As Al continues to spread and weave into
our everyday lives, besides developing
sophisticated hardware and software, we
are facing new and emerging ethical con-
cerns has risen, which altogether call for
the notion of responsible AI. Responsible
AT aims to address the ethical and legal
issues in regards to deployment, as well as

utilization of Al. This is already a major
challenge in conventional AI, which is
necessary to address to provide trust for
the public in using the technology. This
challenge will deepen further when Al
is extended in living machines. This is
particularly true when we consider the
potential applications of learning-based
living machines for treating discases,
where they can potentially be deployed
into the body or the environment.
Another challenge is also the security
aspect, in the similar manner that this is
a challenge in conventional Al

CONCLUSION

As our society embraces Al to play a
part in our everyday lives, we are start-
ing to witness various forms and algo-
rithms that are embedded into devices
with different computational capabilites.
In this article, we investigate MML for
Biological AI, where AI occurs in liv-
ing systems and is based on information
propagation through chemical reaction
and molecule transport, i.e., molecular
communications. We reviewed the cur-
rent background in Biological AI. This
is followed by our proposed directions
of MML through the GRN, bacterial
multi-species communication, as well as
Ca?* signaling. We then discuss future
possible directions for the molecular
communications research.

ACKNOWLEDGMENTS

This work was supported by the National
Institute of Health under Award No.
P20 GM104320.

ABOUT THE AUTHORS

Sasithavan Balasubramaniam
(corresponding author: (sasi@unl.
edu)) is with the School of Computing,
University of Nebraska-Lincoln, Lincoln,
NE, 68588, USA.

Samitha Somathilaka (ssomathilaka2@
unl.edu) is with the School of Computing
University of Nebraska-Lincoln, Lincoln,
NE, 68588, USA, and also with Wal-
ton Institute South East Technological
University, Carlow, Ireland.

Sehee Sun (ssunl2@unl.edu) is with
the School of Computing, University of
Nebraska-Lincoln, Lincoln, NE, 68588,
USA.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on October 11,2024 at 15:58:(39,\‘%!3693f[qﬂﬁﬁmggﬁrﬁmwmmgﬂﬁ@?pm



Advian Ratwatte (aratwatte2@unl.

edu)

is with the School of Computing

University of Nebraska-Lincoln, Lincoln,

NE,

68588, USA.

Massimiliano Pievobon (maxp@unl.

edu)

is with the School of Computing

University of Nebraska-Lincoln, Lincoln,

NE,
REF
[

2]

3]

[7]

(10]
(11]

(12]

68588, USA.

ERENCES

A. K. Jain, J. Mao, and K. M. Mohiuddin,
“Artificial neural networks: A tutorial,” Com-
puter,vol. 29, no. 3, pp. 31-44, 1996.

W. S. McCulloch and W. Pitts, “A logical calculus
of the ideas immanent in nervous activity,” Bull.
Math. Biophys., vol. 5, no. 4, pp. 115-133, 1943.
T. Bohnstingl, F. Scherr, C. Pehle, K. Meier,
and W. Maass, “Neuromorphic hardware
learns to learn,” Front. Newrosci., vol. 13, 2019,
Art. no. 483.

D. Liu, H. Yu, and Y. Chai, “Low-power
computing with neuromorphic engineer-
ing,” Ady. Intell. Syst., vol. 3, no. 2, 2021,
Art. no. 2000150.

A. Hirohata et al., “Review on spintronics:
Principles and device applications,” J. Magnetism
Magn. Mater., vol. 509, 2020, Art. no. 166711.
B. J. Kagan et al., “In vitro neurons learn and
exhibit sentience when embodied in a simu-
lated game-world,” Nexron, vol. 110, no. 23,
pp. 3952-3969, 2022.

K. Warwick, S. J. Nasuto, V. M. Becerra,
and B. J. Whalley, “Experiments with an in-
vitro robot brain,” in Computing With
Instinct, Berlin, Germany:Springer, 2011,
pp. 1-15.

D. J. Bakkum et al., “Embodying cultured
networks with a robotic drawing arm,” in Proc.
29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,
2007, pp. 2996-2999.

L. Smirnova et al., “Organoid intelligence
(OI): The new frontier in biocomputing and
intelligence-in-a-dish,” Front. Sci., vol. 1, 2023,
Art. no. 1017235.

A. Tero et al., “Rules for biologically inspired
adaptive network design,” Science, vol. 327,
no. 5964, pp. 439-442,2010.

N. Roberts and A. Adamatzky, “Mining logical
circuits in fungi,” Sci. Rep., vol. 12, no. 1, 2022,
Art. no. 15930.

K. Sarkar, D. Bonnerjee, R. Srivastava, and
S. Bagh, “A single layer artificial neural net-
work type architecture with molecular engi-
neered bacteria for reversible and irreversible
computing,” Chem. Sci., vol. 12, no. 48,
pp. 1582115832, 2021.

L. Rizik, L. Danial, M. Habib, R. Weiss, and R.
Daniel, “Synthetic neuromorphic computing in
living cells,” Nature Commun., vol. 13, no. 1,
pp. 1-17,2022.

A. Pandi et al., “Metabolic perceptrons for neu-
ral computing in biological systems,” Nature
Commun., vol. 10, no. 1, pp. 1-13, 2019.

M. Pierobon and I. F. Akyildiz, “A physical end-
to-end model for molecular communication in
nanonetworks,” IEEE J. Sel. Areas Commun.,
vol. 28, no. 4, pp. 602-611, May 2010.

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

V. Jamali, A. Ahmadzadeh, C. Jardin, H. Sticht,
and R. Schober, “Channel estimation for diffusive
molecular communications,” IEEE Trans. Com-
mun., vol. 64, no. 10, pp. 4238-4252, Oct. 2016.
W. Guo et al., “Molecular communications:
Channel model and physical layer techniques,”
IEEE Wireless Commun., vol. 23, no. 4,
pp. 120-127, Aug. 2016.

C. Wu, L. Lin, W. Guo, and H. Yan, “Signal
detection for molecular MIMO communica-
tions with asymmetrical topology,” IEEE Trans.
Mol., Biol. Multi-Scale Commun., vol. 6, no. 1,
pp. 60-70, Jul. 2020.

X. Chen, Y. Huang, L.-L. Yang, and M. Wen,
“Generalized molecular-shift keying (GMOSK):
Principles and performance analysis,” IEEE
Trans. Mol., Biol. Multi-Scale Commun., vol. 6,
no. 3, pp. 168-183, Dec. 2020.

A. O. Bicen, I. F. Akyildiz, S. Balasubramaniam,
and Y. Koucheryavy, “Linear channel modeling
and error analysis for intra/inter-cellular Ca2*
molecular communication,” IEEE Trans. Nano-
biosci., vol. 15, no. 5, pp. 488-498, Jul. 2016.

A. Ahmadzadeh, A. Nocl, and R. Schober,
“Analysis and design of multi-hop diffusion-
based molecular communication networks,”
IEEE Trans. Mol., Biol. Multi-Scale Commun.,
vol. 1, no. 2, pp. 144-157, 2015.

Y. Deng, A. Noel, W. Guo, A. Nallanathan, and
M. Elkashlan, “Analyzing large-scale multiuser
molecular communication via 3-d stochastic
geometry,” TEEE Trans. Mol., Biol. Multi-Scale
Commun.,vol. 3,no. 2, pp. 118-133, Jul. 2017.

N. Farsad, D. Pan, and A. Goldsmith, “A novel
experimental platform for in-vessel multi-chem-
ical molecular communications,” in Proc. IEEE
Glob. Commun. Conf., 2017, pp. 1-6.

L. Grebenstein et al., “Biological optical-to-
chemical signal conversion interface: A small-
scale modulator for molecular communications,”
in Proc. 5th ACM Int. Conf. Nanoscale Comput.
Commun., 2018, pp. 1-6.

P. M. Pfliiger and F. Glorius, “Molecular
machine learning: The future of synthetic chem-
istry?,” Angewandte Chemie Int. Ed., vol. 59,
no. 43, pp. 18860-18865, 2020.

E. A. Liberman and S. V. Minina, “Cell molecu-
lar computers and biological information as the
foundation of nature’s laws,” BioSystems, vol. 38,
no. 2-3, pp. 173-177,1996.

C.-Y. Yang et al., “Encoding membrane-
potential-based memory within a micro-
bial community,” Cell Syst., vol. 10, no. 5,
pp. 417-423, 2020.

A. G. Becerra, M. Gutiérrez, and R. Lahoz-
Beltra, “Computing within bacteria: Program-
ming of bacterial behavior by means of a plasmid
encoding a perceptron neural network,” Biosys-
tems, vol. 213, 2022, Art. no. 104608.

X. Li, L. Rizik, V. Kravchik, M. Khoury, N.
Korin, and R. Daniel, “Synthetic neural-like
computing in microbial consortia for pattern
recognition,” Nature Commun., vol. 12, no. 1,
pp. 1-12,2021.

D. Bray, “Protein molecules as computation-
al elements in living cells,” Nature, vol. 376,
no. 6538, pp. 307-312, 1995.

P. E. Schavemaker, A. J. Boersma, and B. Pool-
man, “How important is protein diffusion in
prokaryotes?,” Front. Mol. Biosci., vol. 5, 2018,
Art. no. 93.

[32]

[33]

[34]

[36]

[37]

[38]

[39]

[40]

[44]

M. V. Grosso-Becerra, G. Croda-Garcia, E.
Merino, L. Servin-Gonzalez, R. Mojica-Espi-
nosa, and G. Soberén-Chivez, “Regulation of
pseudomonas acruginosa virulence factors by
two novel RNA thermometers,” Proc. Nat. Acad.
Sci., vol. 111, no. 43, pp. 1556215567, 2014.
J. S. van Zon, M. J. Morelli, S. Téanase-Nicola,
and P. R. ten Wolde, “Diffusion of transcrip-
tion factors can drastically enhance the noise
in gene expression,” Biophys. J., vol. 91, no. 12,
pp. 4350-4367, 2006.
N. Farsad, H. B. Yilmaz, A. Eckford, C.-B.
Chae, and W. Guo, “A comprehensive survey of
recent advancements in molecular communica-
tion,” IEEE Commun. Surv. Tut., vol. 18, no. 3,
pp. 1887-1919, thirdquarter 2016.
E. Galin-Vasquez, B. C. Luna-Olivera, M.
Ramirez-Ibdnez, and A. Martinez-Antonio,
“RegulomePA: A database of transcriptional
regulatory interactions in pseudomonas aeru-
ginosa PAOL,” Database, vol. 2020, 2020,
Art. no. baaal06.
V. Venturi, “Regulation of quorum sensing in
pseudomonas,” FEMS Microbiol. Rev., vol. 30,
no. 2, pp. 274-291, 2006.
V. L. Francis, E. C. Stevenson, and S. L. Por-
ter, “Two-component systems required for
virulence in Pseudomonas aeruginosa,”
FEMS Microbiol. Lett., vol. 364, no. 11, 2017,
Art. no. fnx104.
X. Meng, S. D. Ahator, and L.-H. Zhang,
“Molecular mechanisms of phosphate stress
activation of Pseudomonas aeruginosa quorum
sensing systems,” MSphere, vol. 5, no. 2, 2020,
Art. no. ¢00119-20.
S. S. Somathilaka, D. P. Martins, and S. Bala-
subramaniam, “Information flow of cascading
bacterial molecular communication systems with
cooperative amplification,” in Proc. IEEE Int.
Conf. Commun., 2022, pp. 1728-1733.
S. S. Somathilaka, D. P. Martins, W. Barton, O.
O’Sullivan, P. D. Cotter, and S. Balasubramani-
am, “A graph-based molecular communications
model analysis of the human gut bacteriome,”
IEEE J. Biomed. Health Informat., vol. 26, no. 7,
pp. 3567-3577, Jul. 2022.
A. Korngreen, V. Gold’shtein, and Z. Priel, “A
realistic model of biphasic calcium transients
in electrically nonexcitable cells,” Biophys. J.,
vol. 73, no. 2, pp. 659-673, 1997.
P. He, T. Nakano, D. Wu, B. Yang, H. Liu, and
X. Han, “Calcium signaling in mobile molecular
communication networks,” in Proc. IEEE Glob.
Commun. Conf., 2019, pp. 1-6.
C. Allan, R. J. Morris, and C.-N. Meisrim-
ler, “Encoding, transmission, decoding, and
specificity of calcium signals in plants,” J.
Exp. Botany, vol. 73, no. 11, pp. 3372-3385,
2022.
M. T. Barros, S. Balasubramaniam, B. Jen-
nings, and Y. Koucheryavy, “Transmission pro-
tocols for calcium-signaling-based molecular
communications in deformable cellular tis-
sue,” IEEE Trans. Nanotechnol., vol. 13, no. 4,
pp. 779-788, Jul. 2014.
1. F. Akyildiz, M. Pierobon, S. Balasubrama-
niam, and Y. Koucheryavy, “The internet of Bio-
Nano Things,” IEEE Commun. May., vol. 53,
no. 3, pp. 32-40, Mar. 2015.

N|

%WW&EM‘&E’P@&%ES&WE&%ET‘Yﬁ‘ﬁé%é’f Nebraska - Lincoln. Downloaded on October 11,2024 at 15:58:00 UTC from IEEE Xplore. Restrictions apply.



