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A
Realizing 

Molecular Machine 
Learning Through 
Communications 
for Biological AI 

Future Directions and Challenges

ARTIFICIAL INTELLIGENCE (AI) 
and Machine Learning (ML) are weaving 
their way into the fabric of society, where 
they are playing a crucial role in numer-
ous facets of our lives. As we witness the 
increased deployment of AI and ML in 
various types of devices, we benefit from 
their use into energy-efficient algorithms 
for low powered devices. In this paper, 
we investigate a scale and medium that is 
far smaller than conventional devices as 
we move towards molecular systems that 
can be utilized to perform machine learn-
ing functions, i.e., Molecular Machine 
Learning (MML). Fundamental to the 
operation of MML is the transport, pro-
cessing, and interpretation of information 
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propagated by molecules through chem-
ical reactions. We begin by reviewing 
the current approaches that have been 
developed for MML, before we move 
towards potential new directions that 
rely on gene regulatory networks inside 
biological organisms, as well as their pop-
ulation interactions to create neural net-
works. We then investigate mechanisms 
for training machine learning structures 
in biological cells based on calcium sig-
naling and demonstrate their application 
to build an Analog to Digital Convert-
er (ADC). Lastly, we look at potential 
future directions, as well as challenges 
that this area could solve.

INTRODUCTION
In resent years, we have started to wit-
ness the widespread development of sys-
tems to apply Artificial Intelligence (AI) 
and Machine Learning (ML) to very 
diverse application scenarios [1]. This has 
resulted in software-based systems for 
AI, such as Artificial Neural Networks 
(ANN)  [2], as well as hardware based 
systems like neuromorphic hardware [3]. 
In particular, within the area of ANN, 
various algorithms have been developed, 
that includes Recurrent Neural Networks 
(RNN), Convolutional Neural Net-
works (CNN), amongst others, where 
each has its own properties and behav-
iour derived from specific functions of 
neuronal networks of the brain. While 
developments have been made in AI for 
both hardware and software, there is 
still a number of challenges that exists. 
These challenges include the ability to  
mimic the behavior and realism of neu-
rons and their internal functionalities, 
as well as matching their energy require-
ments. The former challenge is still today 
a major issue that continues to motivate 
research to ensure that new algorithms 
or hardware designs will resemble the 
properties of internal neuronal signaling 
(e.g., ion transfer, action potential gen-
eration and propagation). However, the 
more realistic we design AI algorithms 
to closely resemble neuronal cells, the 
higher the energy consumption since we 
are mimicking the chemical and molecu-
lar reactions that occurs internally. When 
making this comparison, the brain con-
sumes approximately 20 W for 100 bil-

lion neurons and 1,000 trillion synapses 
compared to a neuromorphic processor 
such as the Neurogrid with 65 thousand 
neurons and 500 M synapses, which con-
sumes 3.1W  [4]. In order to minimize 
energy consumptions, alternative materi-
als have also been proposed for artificial 
neural systems and one example is the 
use of spintronics [5].

A number of alternative solutions 
have also been proposed to mimic natu-
ral neuron functions, where biological 
neuronal cells have been used to perform 
AI computing to replace conventional 
computing systems, i.e., biological AI. 
Examples of this include living neurons 
that can play pong [6], robots integrated 
with neuronal cells to control their oper-
ation  [7], control of a robotic arm  [8], 
and Organoid Intelligence Bio-comput-
ing  [9]. This approach has also shown 
that the neurons can also be taught and 
trained to adapt to specific applications. 
Besides neurons, other forms for biologi-
cal systems have also been considered to 
perform computing functions. Examples 
include the use of Physarum to solve net-
working problems at the Tokyo railway 
network [10], and, most recently, the use 
of fungii to perform molecular comput-
ing  [11]. Using these approaches can 
possibly result in new solutions where 
biological cells work in tandem with 
silicon technologies, i.e., bio-hybrid AI. 
While this may address the aforemen-
tioned challenges of including more real-
istic biological properties, protocols and 
technologies to maintain biological cell 
lines and keeping them alive for a long 
period may also invalidate the quest for 
higher efficiency of these systems.

Fundamental to all biological AI 
solutions and models that have been 
proposed is the exchange of molecules 
between cells to realize computing func-
tions. This communication based on 
molecules occurs as both an intra, as well 
as inter-cellular signaling. However, the 
training and computing processes within 
these systems can be further enhanced 
through modeling, optimization, and 
engineering of these same processes, 
with the help of molecular commu-
nication theory. As this field is slowly 
maturing, models and systems have 
been developed to study and engineer 

information encoding into molecules 
to be exchanged between different bio-
logical or bio-hybrid entities, also called 
bio-nanomachines, such as the afore-
mentioned AI-enabling cells. Examples 
include characterizations of channels 
within biological environments  [15], 
[16], [17], [18] and molecular modula-
tion techniques (e.g., MoSK [19]). These 
new communication models have been 
applied to characterize and engineer 
numerous types of molecular communi-
cation systems such as neuronal intercon-
nections [20], multi-hop diffusion-based 
networks  [21], and large scale systems 
with 3D geometry  [22]. Test beds and 
proofs-of-concept have also been devel-
oped, including table top molecular 
communication systems  [23], as well as 
molecular modulators that transmit digi-
tal information between computers [24]. 
The engineering of molecular communi-
cation systems in biological or bio-hybrid 
AI systems can enable new design, as well 
as efficiency and robustness. This may 
include the design of engineered mol-
ecules to propagate information during 
gene expression leading to intra-cellular 
signaling, as well as inter-cellular signal-
ing that can support ANN functional-
ities between populations of cells. This 
can be achieve through the combination 
of molecular communication theory and 
the tools provided by synthetic biology, 
where genetic circuits are engineered to 
produce molecular signals communicat-
ed between cells.

In this article, we will analyze a num-
ber of different biological AI and the 
types of communication that is inherent 
in the models, i.e., Molecular Machine 
Learning (MML). MML in here intend-
ed as machine learning realized with 
molecules and chemical reactions as 
building blocks, rather than computer 
programs to inform synthetic chemis-
try, as in [25]. This includes engineered 
cells to create perceptrons found in ANN 
or interconnecting engineered cells to 
behave as neural networks. We will then 
follow with alternative future directions 
for developing ANN using the concepts 
of molecular communication theory 
through the natural Gene Regulatory 
Networks (GRN), molecular communi-
cation between multi-species population 
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of cells, as well as engineering of Ca2+ 
signaling based molecular communi-
cations to create an Analog-to-Digital 
Converter (ADC). Lastly we will focus 
on future challenges for MML.

This article is organized as follows. 
Section 2 discusses current background 
on engineered cells as well as metabolic 
reaction models to realize ANN. In Sec-
tion 3, we propose a new direction where-
by natural GRNs and their embedded 
intracellular molecular communication 
for AI. In Section 4, we introduce an idea 
for utilizing a multi-species cellular con-
sortia to perform AI using inter-cellular 
molecular communication. In Section 5, 
we move towards engineering calcium 
(Ca2+) signaling in cells to achieve per-
ceptron like behavior. In Section 6, 
we discuss future directions and chal-
lenges, while in Section 7, we conclude  
the paper.

CURRENT BACKGROUND  
ON BIOLOGICAL AI
Numerous research has indicated nat-
ural intelligence that occurs within  
cells. From the perspective of molecu-
lar communications, this deals with ini-
tially sensing molecular signals from the 
environment, followed by internal signal 
transduction that leads to gene expres-
sions, as well as corresponding metabolic 
pathways. This process is largely pro-
grammed into the cell’s genome  [26]. 
In certain cases, this intelligence and 
memory management can be performed 
with organisms that lack a brain, or non-
neuronal systems as pointed out in [27]. 
In the case of bacteria, claims have been 
made the microbes contain ’minimal 
cognition’ [28].

In [12], a single layer ANN was devel-
oped using engineered E.Coli, known as 
Bactoneuron (Figure  1(a)). The devel-
oped model is able to achieve both 
reversible as well as irreversible comput-
ing. Each cell is engineered to receive 
inter-cellular diffusing molecules, and 
as a response, execute a log-sigmoid 
activation function to produce Green 
Fluorescent Protein (GFP) output. This 
execution is established through a tran-
scriptional regulation which is under-
taken by an engineered genetic circuit 
(also referred to as cellular device). The 
solution proposed uses established set of 
general rules to map the complete ANN 
architecture and to derive unit bactoneu-
rons directly from the functional truth 
table of a complex computing function. 
The study produced both simulations, as 
well as experimental validation. Example 
applications included a 2-to-4 decoder, 
a 4-to-2-priority encoder, a majority 
function, a 1-to-2 de-multiplexer, and a 
2-to-1 multiplexer and reversible logic 
mapping through Feynman and Fred-
kin gates. Rizik et  al.  [13] developed 
the Perceptgene (Figure  1(b)), which is 
a perceptron model of an ANN. This 
was achieved through the genetic circuit 
engineering in E. Coli bacteria. The per-
ceptron behavior is established through 
a logarithmic input-output relationship 
that fits to the non-linear biochemi-
cal reactions that occur in the genetic 
circuits. The implementation is based 
on engineered genetic circuits whose 
input-output behavior includes both 
the power-law, as well as a multiplica-
tion function. The power-law function 
encodes the weighted chemical inputs, 
while the multiplication function aggre-

gates all the inputs that will determine 
the activation. The weight of each input 
is determined by the Hill coefficient. 
The two inputs used are isopropyl Beta-
D-1-thiogalactopyranoside (IPTG) and 
anhydrotetracycline (aTc) molecular sig-
nals and results in a repression process 
that in turn regulates their own produc-
tion using an auto-negative feedback 
loop. Similar to the perceptrons of an 
ANN, the perceptgene also contains a 
bias component for the sigmoidal acti-
vation function. The bias input is set by 
the ratio of the maximum transcription 
process to the binding affinities of the 
protein-protein/protein-DNA reactions. 
The applications of the perceptgene 
include weighted multi-input functions, 
classification, as well as an offline gradi-
ent descent learning algorithms. In [28], 
an offline trained perceptron neural net-
work is used to program a population 
of bacteria, and it is simulated in silico. 
Through the diffusion of inter-cellular 
molecular communication within a pop-
ulation, the cells were able to have social 
interactions and form complex commu-
nities. The programmed perceptron was 
also used to solve an optimization prob-
lem. The work was based on an in-silico 
model, where the plasmid encoded per-
ceptron was designed using Cello, while 
the simulation of the bacterial com-
munication was developed through the 
Gro simulation tool. A particular aspect 
of the study is the use of programmed 
ANN into the genetic circuit to control 
signaling between cells in the popula-
tion to perform functions. The input are 
natural molecules (e.g., galactose), which 
in turn control a downstream behavior. 
This includes (i) emitting molecular 

FIGURE 1  Proposed solutions to develop neural networks from engineering cells. (a) Bactoneuron [12], (b) Perceptgene [13], and (c) metabolic 
perceptron [14].
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signals proportional to the concentration 
of oxygen that is used for metabolic pur-
poses, (ii) inducing chemotaxis for cell 
movement, (iii) commensalism, where 
the cells emit a signal that degrades the 
waste products from other bacteria in the 
population, and (iv) controlling of cell 
growth when the environment is harsh.

In  [29], a consortia-based bacterial 
ANN was developed and proved experi-
mentally. An interesting feedback pro-
cess is developed between the receiver 
and the sender, which are the percep-
tron nodes for decision making and this 
is achieved using quorum sensing. The 
sender bacteria are able to emit varying 
molecular signals (OHC14 - acyl-homo-
serine lactone 3OHC14:1-HSL), which 
represent the weights. These molecu-
lar signals are induced by an external 
signal (OC6 (acyl-homoserine lactone 
3OC6-HSL)). The application was spe-
cific to 4-bit pattern recognition, where 
varying levels of the OC6 inducers are 
applied to sender bacterial populations, 
and once the molecular signals diffuse to 
the receiver, they will activate a genetic 
circuit to produce an output signal. A 
novel gradient descent algorithm was 
also developed to optimize the weights 
of molecular signals to suit the pattern 
recognition application.

A cell-free perceptron model was pro-
posed in [14] using the metabolic circuit 
illustrated in Figure 1(c). The latter was 
designed with a focus on biochemical 
retrosynthesis to predict the pathways, 
which was achieved using the Retro-
path and Sensipath computational design 
tools. The circuit was then embedded 
into a cell-free system in order to create 
the Metabolic Perceptron. The metabol-
ic perceptron was able to perform binary 
classification based on metabolite molec-
ular signals that leads to a classification 
process. The example application was 
here a four-input binary classifier.

GENETIC REGULATORY AI
While the previous section focused on 
the genetic engineering of living cells to 
create machine learning systems, in this 
section, we will look at an alternative 
approach that is based on computing 
structures naturally present in biological  
cells, i.e., GRNs. This approach is based 

on essential similarities between a GRN 
and its structure to an ANN. While a 
number of different works have investi-
gated neural-like properties in GRNs, 
our investigation focuses on how molec-
ular communication properties can be 
exploited to perform computing func-
tions as well as training by externally 
manipulating the weight connections 
between gene relationships.

BACKGROUND ON GENE  
REGULATORY NETWORKS
A GRN is a highly complex network of 
multi-layered interactions between genes. 
Each individual cell carries a GRN spe-
cific to its species and strain, giving an 
unique behavioral pattern, as well as 
functionalities. A cell can sense a range 
of external stimuli using membrane 
receptors, perform computing through 
the GRN and express genes accordingly, 
thus resembling an input-process-output 
sequence found in conventional comput-
ing. A typical process of gene expression 
starts with the transcription process of 
converting the genes into mRNA, and  
this, depending on the gene, can be fol-
lowed by the translation process that 
coverts the information contained in 
the mRNA into proteins. However, dur-
ing gene expression within the GRN, 
molecular communication patterns can 
be identified in gene-gene interactions, 
which are complex processes that occur 
at multiple layers. For example, while 
these interactions in prokaryotes con-
tribute to the regulation of the afore-
mentioned transcription process, for 
eukaryotes, they can be post-transcrip-
tional, i.e., contributing to, among other 
things, mRNA (or other transcript) and/
or protein functionalities.

Moreover, the regulation in the post-
transcription layer contributes to specific 
dynamics in the behavior of GNRs. In 
this context, proteins plays a crucial role 
complementing the regulation mecha-
nism by integrating sensing, transfer, 
storage, and processing of information. 
As an example, proteins can perform 
computational tasks such as amplifica-
tion, Boolean logic functions, and infor-
mation storage through mechanisms of 
allosteric regulation  [30]. In addition, 
the inter-conversions between phosphor-

ylated and non-phosphorylated states of 
proteins act as switches enabling them to 
exhibit sigmoidal behaviours over a lim-
ited concentration range.

In the following, we show how these 
complex molecular signaling processes 
that involve multiple layers of chemical 
reactions, as well as components during 
gene expressions, combined with the 
network structure of genome relation-
ships, can allow us to identify and exploit 
natural ANN within GRNs, i.e., Genetic 
Regulatory AI (GRAI).

ANN LEARNING AND TRAINING 
MODELS IN A SIMPLE GENE 
REGULATORY NETWORK
The transcription of a particular gene 
in a GRN is combinatorial action of 
products of other genes, as well as its 
own. Subsequently, the state of the cell 
is an action based on a combination of 
diverse translated gene products. When 
we observe these properties, we see a 
resemblance to the dynamics of an ANN, 
specifically a Recurrent Neural Network 
(RNN), where the current state depends 
on the previous. This means that there is 
a potential to create MML from manipu-
lating the gene expression patterns.

To describe our concept, we will 
focus on a simple communication pat-
tern found in the GRN of a bacterial 
cell. Bacteria uses signal transduction 
pathways to sense the environment by 
processing input signals. Two-Component 
Systems (TCS) are among the most wide-
spread signal transduction mechanisms, 
which contain a Sensor Histidine Kinase 
(SHK) that receives external signals and 
a response regulator that accordingly ini-
tiates the expression of a set of genes. On 
average, a bacterial cell contains 30 TCSs 
that are essential for their virulence, 
growth, and survival. Approximately  
87% of the known response regulators 
of TCS involve gene expression regula-
tion at the transcription layer. Based on 
this, 96% of SHKs are capable of sensing 
small-molecule-binding from the extra-
cellular space. Hence, the combination 
of TCSs can be considered a viable exam-
ple of a natural GRN pattern that can be 
modeled and characterized as an ANN, 
where the input layer is represented by 
the SHKs, and multiple hidden layers as 
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well as an output layer consist of genes 
and their mutual interactions. There 
are several advantages in using the TCS 
sub-network of the GRN as an ANN 
for MML. This includes availability of 
experimental data that offer validation 
and quantification of the relationships 
between gene expressions for both input 
and output layers. In a number of cases, 
the direct mapping of a GRN sub-net-
work to an ANN is not feasible. The 
reason is because sometimes the num-
ber of gene interactions (network hops) 
from the input layer to the output layer 
can vary for different gene expression 
paths, resulting in the corresponding 
ANN to be asymmetric, which leads to 
less computational efficiency. There are 
well-known approaches to address this 
problem, such as introducing phantom 
nodes that do not alter the overall behav-
ior or treat the network as asymmetric 
ANN structure. Another alternative is 
to introduce missing gene interactions 
through engineered genetic circuits, 
which can further align the sub-network 
closer to a typical ANN structure.

Figure 2 illustrates how we recognize 
an ANN structure from a TCS sub-net-
work of a GRN. As shown in the figure, 
the cell is able to combine multiple input 
signals and accordingly express down-
stream genes through the network. Gene 
expression products from one gene reach 
the non-coding region of another via 

intra-cellular diffusion [31]. The relation-
ship of genes to be expressed in the net-
work can be associated to a set of weights. 
The values of the weights are a result of 
several factors that include the transcrip-
tion factors, affinity of the transcription 
factor binding site, thermoregulation, 
enhancers [32], as well as the noise due to 
the diffusive motion of regulatory mol-
ecules [33], [34]. Here, we focus mainly 
on two TCSs: PhoB-PhoR and BqsR-BqsS 
systems, which are associated with phos-
phate and iron uptake of the P. aeruginosa 
species. Further, we target the inter-cellu-
lar molecular communications by consid-
ering three QS systems, namely, Las, Rhl, 
and PQS genes where Las uses 3O-C12-
HSL and Rhl uses C4-HSL, while the 
PQS relies on 2-heptyl-3-hydroxy-4(1H)-
quinolone. To identify the correspond-
ing ANN structure, we first modeled the  
GRNs as graphs using the interaction 
structural data from publicly available 
database [35]. This is followed by extract-
ing the TCS sub-network related to the 
phosphate intakes iron along with the 
quorum sensing process. The obtained 
ANN model contains various numbers 
of hops from the input layer to the out-
put layer, which require the introduction 
of phantom nodes that do not have an 
impact on the interaction dynamics of 
the network. The weights of the ANN 
represented by the TCS are estimated 
relatively using the interaction dynamics, 

as well as transcriptomic data [36], [37]. 
The performance accuracy of this model 
is then evaluated based the pyocyanin 
production and gene expression levels in 
low and high phosphate conditions with 
the data from wet-lab experiments in sim-
ilar setups [38].

A typical ANN will require modifica-
tion of weights as it is being trained to 
serve for a specific purpose. Here, we 
investigated how the weights of the ANN 
related to the TCS can be changed with 
a specific focus on changes that can be 
operated externally to the biological cell 
from the environment. Previous research 
has demonstrated how the temperature 
can impact the cellular functions of P. 
aeruginosa. This usually results in the 
modulation of one specific gene expres-
sion interaction of the Rhl QS sys-
tem [32]. As highlighted in Figure 2(b), 
with the reception of C4-RhlR at 37°C 
temperature, the weight of hn21 - rhlR 
is significantly higher compared to the 
same at 30°C, as shown in Figure 2(c). 
This corresponds to a higher expression 
rate of RhlR at 37°C. This demonstrates 
that updating and training of GRAIs is 
possible through changes in the environ-
mental conditions such as temperature.

MINING ANN IN GRNS
Our previous section has shown that cer-
tain sub-networks of the GRN exhibit 
natural neural networks. In this section, 

FIGURE 2  Illustration of inherited GRAI where (a) shows the extraction of a subnetwork that resembles an ANN with relative weights, (b) set of 
relative weights in one environment condition (temperature at 37°C), and (c) modified weight in a different environment condition (temperature 
 at 30°C).
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we want to investigate if other sub-net-
works that exhibit ANN structures can 
be extracted from the GRN. We per-
form this through a search algorithm 
that mines the GRN for specific types 
of structures. During the search process, 
if we need a structure with i number 
of input nodes and j number of output 
nodes, the algorithm first mines j num-
ber of nodes that have a common prede-
cessor. The j number of nodes will have 
a number of different predecessors and 
will be put together into the same group. 
Within the same group, the nodes will 
be put together to create different com-
bination, where the combinations must 
have i number of input nodes that re the 
predecessor, as well as j output nodes. 
These combination will ref lect the dif-
ferent number of sub-network for nodes 
input nodes i and output nodes j.

Figure 3(a) illustrates examples of 
a Feed-Forward neural network with  

different structures of fully connected 
ANN sub-networks extracted from the 
GRN. Figure 3(b) shows the number of 
perceptron and Feed-Forward neural net-
work structures we obtained from the 
GRN using our mining algorithm. We 
are able to discover a significant number 
of perceptron structures with the high-
est recorded for one output node and two 
input nodes. As we increase the number 
of inputs, the number of fully connected 
Feed-Forward networks becomes harder 
to discover. In particular, Feed-Forward 
networks with five output nodes and high-
er than three input nodes are very rare.

Since these Feed-Forward neural 
networks are pre-trained with defined 
weights, the question now rises as to how 
we can use this for applications. One 
approach towards using the ANN found 
in the GRN is to match it to an appli-
cation’s requirement. This will require 
a mining algorithm that matches the 

problems that require an ANN with the 
same structure as well as weight combi-
nation. While this can create challenges 
in terms of finding the right problem to 
suit the ANN found in a GRN, there is 
an opportunity to engineer the circuit 
with addition of genes that will increase 
the diversity of the network, as well as 
integrate hidden layers.

BACTERIAL MULTI-SPECIES 
DIFFUSION-BASED NEURAL NETWORK
In this section, we look at an alternative 
model for MML, where we investigate 
how multiple species of bacteria with 
symbiotic relationships, such as those 
found in a bacteriome, i.e., bacteria liv-
ing in endosymbiosis with a host organ-
isms, can be modeled and exploited as an 
ANN. In general, bacteria of the same 
species receive specific types of molecu-
lar signals from other populations and 
process them to produce a set of mol-
ecules that can inf luence other species 
or host cells. These multi-species bacte-
rial populations can be considered the 
nodes of a network, where the molecular 
signals that diffuse between population 
are the link/edges, based on diffusion-
based molecular communications. As 
the molecular signal cascades through 
the network from layer to layer, this 
resembles a feed forward neural network 
(layer in this instance are bacterial spe-
cies that receive the same type of signals). 
The relationship structure of the bacteria 
and signaling weights depend on fac-
tors such as the diversity of the species, 
population sizes, cross-feeding/inter-
cellular communications and molecular 
signal diffusion dynamics. The popula-
tion sizes determine the rate of molecular 
signal reception and production, and this 
ref lects the weight of the edges of the 
corresponding ANN model. If a larger 
population produces a signal and another 
population that has higher relative abun-
dance consumes that signal, the weight 
corresponding to the link between these 
larger populations will be modeled with 
an ANN edge with a larger weight. On 
the other hand, if the population sizes of 
the two different species are smaller, the 
interaction between them is compara-
tively weaker and will result in a smaller 
weight value of the corresponding edge.

FIGURE 3  Two fully-connected ANN sub-networks extracted from the full GRN is shown in (a) and 
number of different sub-network structures that can extracted from the GRN is illustrated in (b).
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One of the well-studied bacterial 
ecosystems is the Human Gut Bacteri-
ome (HGB), which constitutes up to 
1000 species [39], and it suggests a rel-
evant use case for the aforementioned 
concept. The reliability of the molecular 
signal f low between the different spe-
cies is vital in modeling and exploiting 
the ecosystem as an ANN. In our pre-
vious study, the structural derivation 
of a network of multi-bacterial spe-
cies using graph theory was analyzed, 
where input of glucose is received by 
certain species to produce various Short 
Chain Fatty Acid (SCFA) communi-
cated between the cells [40]. The study 
revealed that the weights of the edges, 

which are the lactate and acetate signals 
exchanged between the populations, 
can be modified and adapted based on 
external inputs (e.g., glucose). Using 
this concept, we believe we could design 
a Bacterial Multi-species ANN from 
the SCFA molecular communication 
network within the HGB. Figure 4(a) 
illustrates an example of multi-species 
bacteria population that are organized 
into an ANN structure. The arrange-
ment of the structure is based on the 
input-output relationship of molecular 
production. For example, when input 
glucose is consumed, it produces lactate 
and two SCFA (acetate and proprion-
ate) by six species to produce butyrate 

for other species, then the six species 
will be the first layer of a corresponding 
ANN of our NN, and the species that 
produce butyrate will be the ANN’s sec-
ond layer. Figure 4(a) shows the ANN 
with the relative weights of each edge 
shown with different color shades. Our 
aim is to train the ANN in Figure 4(a) 
into an ANN with a specific functional-
ity, shown in Figure 4(b). Our training 
is based on the external input of glucose, 
where we can see in Figure 4(c) that as 
the species are consuming and produc-
ing molecules, their weight is slowly 
being modulated by changing the popu-
lation sizes see Figure 4(d) (as the Mean 
Squared Error (MSE) of the population 

FIGURE 4  Illustration of population-based ANN weight alteration and its impact on the network outputs is shown here, where (a) is the initial ANN 
setup, (b) is the ANN with the preferred network weights, (c) is the convergence of weights of all the edges relative to the preferred ANN over the 
transformation period, and (d) is the MSE behaviors of molecular production relative to the preferred ANN weights. Further, the output signal 
behaviors due to variations in weights caused by network structural changes are shown in (e), (f), and (g) by changing the population sizes  
of Bacteroides, Alistipes, and Faecalibacterium, respectively.
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converges, similarly the molecular pro-
duction error). Further, we show how 
significant the impact of the popula-
tion size variation is on the overall gut 

metabolic performance by altering the 
abundance of each species relative to a 
healthy HGB composition. Figure 4(e) 
shows the network outputs in terms of 

acetate, propionate, and butyrate when 
the abundance of Bacteroides is changed 
from zero cells in the environment 
to a population size of 200% as in the 

FIGURE 5  Transforming Ca2+  ions molecular communication into a perceptron. (a) A conventional perceptron model, (b) a two-bit ADC architecture, 
(c) engineering Ca2+ signaling into an ADC between two cells, (d) Ca2+ signaling training process to modify the basal functional activity and 
communication channel flowchart, (e) trained Ca2+ ions transients in the cytoplasm, (f) dynamics of Cell 1 weight  w0 through the training process 
with respect to the input extracellular Ca2+ input (x), and (g) variations in output Ca2+ ions for the two cells to represent the ADC digital bits.
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healthy HGB. Figure 4(f) and (g) pres-
ent the behaviors of the same outputs 
when altering the population sizes of 
Alistipes and Faecalibacterium, respec-
tively. These results indicate the pos-
sibility of altering weights of Bacterial 
Multi-species ANN to modify the net-
work outputs significantly, which can be 
used in applications such as personalized 
treatment of metabolic disorders.

Ca2+ SIGNALING PERCEPTRON 
BASED ON MOLECULAR 
COMMUNICATIONS
In this section, we discuss a perceptron 
that can be trained by controlling the ion 
flow as well as the basal reactions of Ca2+  

Signaling between biological cells. As an 
example, we demonstrate the design of 
a multi-cell ADC realized by modulating 
the cell’s Ca2+ influx, as well as through 
the engineering of genetic circuits.

CALCIUM SIGNALING
Communication through Ca2+ ions is 
one of the essential signaling processes 
at the basis of numerous cell functions. 
While a few mathematical models for 
Ca2+ signaling have been proposed, the 
model by Korngren et  al. for Ca2+ ion 
transients in electrically non-excitable 
cells is one of the most recognized and 
is at the basis of the concepts we present 
in the following  [41]. According to this 
well-regarded model, this communica-
tion process is based on Ca2+ ion influx 
into the cytoplasm from the extracellular 
medium, where ion-conducting channels 
are established through the membrane 
and controlled by receptors. The recep-
tor in the model is designed in terms of 
a linear activation instead of complicated 
non-linear agonist binding curve  [41]. 
As the influx of ions increases the Ca2+ 
signaling reaction is activated, where the 
Ca2+ ion pumps allow the outf low of 
ions from the cytoplasm to the external 
medium, as well as its store. Eventually, 
the Ca2+ ions concentration in the cyto-
plasm reaches a saturated level. Based 
on this sequence of events, numerous 
Ca2+ signaling based molecular com-
munications systems, models, and their 
characterization have been investigated 
and proposed over the years  [20], [42], 
[43], [44].

OBTAINING A PERCEPTRON  
FROM Ca2+ SIGNALING
We adapt the Korngreen et al. model to 
exploit a Ca2+ signaling system as a per-
ceptron. As illustrated in Figure 5(a), the 
input ( x ) will be the Ca2+ ion concen-
tration in the extracellular medium and 
the weight ( w ) is the Ca2+ ions influx 
rate through the plasma membrane chan-
nels. Therefore, x * w  represents the 
amount of Ca2+ ion influx ( y ) into the 
cytoplasm, representing its transient. As 
described earlier, the Ca2+ ion transients 
are multi-stage signaling processes that 
involve the transition of ions within the 
cytoplasm, store, buffer, as well as the 
extracellular medium, and regulate the 
concentration in the cytoplasm. In order 
to train the Ca2+ signaling process into 
a perception, the cell needs to be the 
incorporation of an engineered genet-
ic circuit to modify its basal fractional 
activity to trigger the Ca2+ signaling 
reaction or to modulate the influx chan-
nel. In the case of a multiple-cell system 
to realize an ANN multi-perceptron net-
work, the engineered genetic circuits are 
required to enable dynamic activation 
and deactivation of the Ca2+ channel.

TWO-BIT ANALOG  
TO DIGITAL CONVERTER
ARCHITECTURE
We adapted the Ca2+ ion signaling 
model to create interacting perceptrons 
in multiple cells that altogether realize 
a two-bit ADC through a simulation 
model. The architecture of a conven-
tional ADC is illustrated in Figure 5(b). 
The equivalent model based on Ca2+ 
signaling, where made clear the essential 
role of ion flow between two cells (the 
blue arrows in the Figure 5(c) indicate 
Ca2+ ions reactions to facilitate this). 
The input x  is the incoming extracel-
lular Ca2+ concentration into the two 
cells, where the range of input considered 
in the simulation is set between 500µ M  
to 2500µ M and sampled according to 
an interval of 500µ M. By dividing this 
range into four intervals, each interval 
will produce different Ca2+ signals from 
two cells, i.e., Cell 1  and Cell 2 , which 
map to different digital bits. Based on 
this, the Cell 1  and Cell 2  produce 
the Most Significant Bit (MSB) and the 

least signif icant bit (LSB), respective-
ly. Ca2+ ions in the extracellular medi-
um( x ) flow into the cytoplasm through 
the Ca2+ channel with an inf lux rate 
w0  and w1  for Cell 1  and Cell 2 , 
respectively. A bias to the Ca2+  ions 
influx for each of the two cells ( y0 , y1 )  
is randomly selected and applied (in this 
example th is is b0 0 169255� . � M 
and b1 0 287264� . � M, respectively). 
Through the Ca2+ transients, the ion 
concentrations in the cytoplasm that are 
set to C0  and C1 , respectively. By set-
ting a threshold, in our case, 1µ M, the 
Ca2+ concentration in the cytoplasm, can 
be converted into digital bit ( Z0 , Z1 ),  
which are the MSB and LSB. In order 
to make an ADC, Cell 1  is genetically 
engineered to produce molecules when 
enough Ca2+  ions (1µ M) are present 
in the cytoplasm. The output molecules 
temporally deactivate the calcium chan-
nel in Cell 2  plasma. This deactivation 
rate is indicated as d0 .

TRAINING PROCESS
The flow chart for training the Ca2+ sig-
naling perceptron is presented in Figure 
5(d). The two cells have to be trained 
to obtain optimal Ca2+ inf lux rates 
(w0, w1) as well as the correct Cell 1’s  
calcium channel deactivation rate for 
Cell 2 (d0) so that Cell 1 and Cell 2 can 
produce the aforementioned MSB and 
LSB, respectively. Cell 1 is trained first 
to find an optimal w0, and then Cell 2 
to obtain w1  and d0 . With initial w0,  
Ca2+ f lows into Cell 1 and is regulat-
ed in the cytoplasm (C0) for a certain 
period. Based on the amount of input 
from the extracellular medium ( x ), the 
concentration at saturation will represent 
an MSB digital bit (Z0). When Z0  is bit 
0, but the expected output is bit 1: an 
activation chemical from the engineered 
circuit is injected to elevate the basal 
activity of the calcium channel in Cell 1  
plasma. Due to the increased activity 
of the channel, an increased amount of 
Ca2+ ions will f low into Cell 1, which 
means the inf lux rate (w0) is also 
increased. For the opposite case, when 
Z0 is bit 1 and the expected value is bit 
0, a different deactivation chemical signal 
is expressed by the engineered genetic 
circuit to reduce the basal activity of the 
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Ca2+ channel. Then, w0 is updated to 
a lower value. Based on this sequential 
training process, the optimal w0  will 
be found. The same training process is 
performed on Cell 2, except for one case. 
This exception case is when Z0  and Z1  
are bits 1, but the expected Z1  is bit 
0, which will require manual interven-
tion to modify the rate of Cell 1 output 
chemical production instead of injecting 
chemicals. Figure  5(e) shows how the 
perceptron behaves for different levels 
of Ca2+ within the cytoplasm based on 
varying extracellular influx. Figure  5(f) 
illustrates an example of convergence of 
weight w0  during training with respect 
to the error for varying levels of extra-
cellular input (x). Finally, Figure  5(g) 
shows the variations of output from 
the two cells that represent digital bits 
from Cell 1 and Cell 2. For example, an 
input between 1000µ M and 1500µ M  
results in ’01,’ where the 0  b is from  
Cell 1 and 1 b is from Cell 2.

CHALLENGES
While we have identified solutions that 
enable non-neural cells to develop percep-
tron properties, or the exploitation of gene 
regulations to obtain ANN functional-
ities, there are still a number of challenges 
that need to be addressed to move towards 
practical applications in the future, and 
some important ones are discussed next.

CONTROLLING MOLECULAR 
COMMUNICATIONS IN MOLECULAR 
MACHINE LEARNING
The MML that we have discussed so 
far are based on training and comput-
ing operations that stem from com-
munications of molecules and chemical 
reactions. To develop MML systems pro-
cesses matching the computational capa-
bilities of silicon-based technologies, we 
will eventually need to consider multi-
layer perceptron architectures. While 
the genetic engineering will possibly be 
the main enabling technology, specific 
challenges are as follows. First, since the 
training of the edge weights of molecu-
lar signals, which in our case is based 
on population control, a mechanism is 
required to ensure that parallel chang-
es in the bacteriome can be performed 
to modify the relative population of 

different species/strains in the system. 
This becomes more challenging when we  
consider Ca2+ signaling between cells  
and in particular controlling the flow of  
ions through the gap junction of cells.  
Second, while GRAI might be inher-
ently including multi-layer perceptrons, 
the question is how do we determine 
appropriate chemical inputs to express 
genes of the input nodes and, at the same 
time, detect expressions on specific out-
put nodes. From a multi-bacterial species 
perspective, this will require engineering 
of cells with different receptors to detect 
diverse molecular signals from the previ-
ous layers. The cells will, therefore, need 
to have the ability to detect signals effi-
ciently and operate in noisy environments. 
The other challenge is the ability to syn-
chronize all transmissions as signals prop-
agate between different layers. The latter 
challenge can have an immense impact 
on the reliability of the resulting ANN. 
Since we have shown that multiple ANNs 
are embedded in a GRN through a sub-
network, the question is whether mul-
tiple parallel processing can be achieved 
through different gene expression paths.

BIO-HYBRID AI
The paradigm of the Internet of Bio-
Nano Things  [45] includes the need to 
interconnect molecular communication 
systems to connect to the cyber-Internet 
by propagating information between the 
molecular and the electrical domains. 
This can be realized through an elec-
tro-chemical based Bio-cyber interfaces. 
While this can allow to detect chemical 
outputs from the MML, an issue arises 
when we want to actively interact and 
reconfigure the MML system from the 
electrical domain. In particular, the chal-
lenge lies in the mechanism to reconfig-
ure the weights.

RESPONSIBLE AI IN MOLECULAR 
MACHINE LEARNING
As AI continues to spread and weave into 
our everyday lives, besides developing 
sophisticated hardware and software, we 
are facing new and emerging ethical con-
cerns has risen, which altogether call for 
the notion of responsible AI. Responsible 
AI aims to address the ethical and legal 
issues in regards to deployment, as well as 

utilization of AI. This is already a major 
challenge in conventional AI, which is 
necessary to address to provide trust for 
the public in using the technology. This 
challenge will deepen further when AI 
is extended in living machines. This is 
particularly true when we consider the 
potential applications of learning-based 
living machines for treating diseases, 
where they can potentially be deployed 
into the body or the environment. 
Another challenge is also the security 
aspect, in the similar manner that this is 
a challenge in conventional AI.

CONCLUSION
As our society embraces AI to play a 
part in our everyday lives, we are start-
ing to witness various forms and algo-
rithms that are embedded into devices 
with different computational capabilites. 
In this article, we investigate MML for 
Biological AI, where AI occurs in liv-
ing systems and is based on information 
propagation through chemical reaction 
and molecule transport, i.e., molecular 
communications. We reviewed the cur-
rent background in Biological AI. This 
is followed by our proposed directions 
of MML through the GRN, bacterial 
multi-species communication, as well as 
Ca2+ signaling. We then discuss future 
possible directions for the molecular 
communications research.

ACKNOWLEDGMENTS
This work was supported by the National  
Institute of Health under Award No. 
P20 GM104320.

ABOUT THE AUTHORS
Sasitharan Balasubramaniam  

(corresponding author: (sasi@unl.
edu)) is with the School of Computing,  
University of Nebraska-Lincoln, Lincoln, 
NE, 68588, USA.

Samitha Somathilaka (ssomathilaka2@
unl.edu) is with the School of Computing  
University of Nebraska-Lincoln, Lincoln,  
NE, 68588, USA,  and also with Wal-
ton Institute South East Technological  
University, Carlow, Ireland.

Sehee Sun (ssun12@unl.edu) is with 
the School of Computing, University of 
Nebraska-Lincoln, Lincoln, NE, 68588, 
USA.

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on October 11,2024 at 15:58:00 UTC from IEEE Xplore.  Restrictions apply. 



20  |  IEEE NANOTECHNOLOGY MAGAZINE  |  JUNE 2023	

Adrian Ratwatte (aratwatte2@unl.
edu) is with the School of Computing 
University of Nebraska-Lincoln, Lincoln, 
NE, 68588, USA.

Massimiliano Pierobon (maxp@unl.
edu) is with the School of Computing 
University of Nebraska-Lincoln, Lincoln, 
NE, 68588, USA.

REFERENCES
[1]	 A. K. Jain, J. Mao, and K. M. Mohiuddin, 

“Artificial neural networks: A tutorial,” Com-
puter, vol. 29, no. 3, pp. 31–44, 1996.

[2]	 W. S. McCulloch and W. Pitts, “A logical calculus 
of the ideas immanent in nervous activity,” Bull. 
Math. Biophys., vol. 5, no. 4, pp. 115–133, 1943.

[3]	 T. Bohnstingl, F. Scherr, C. Pehle, K. Meier, 
and W. Maass, “Neuromorphic hardware 
learns to learn,” Front. Neurosci., vol. 13, 2019, 
Art. no. 483.

[4]	 D. Liu, H. Yu, and Y. Chai, “Low-power 
comput ing with neuromorphic engineer-
ing,” Adv. Intell. Syst., vol.  3, no.  2, 2021, 
Art. no. 2000150.

[5]	 A. Hirohata et al., “Review on spintronics: 
Principles and device applications,” J. Magnetism 
Magn. Mater., vol. 509, 2020, Art. no. 166711.

[6]	 B. J. Kagan et al., “In vitro neurons learn and 
exhibit sentience when embodied in a simu-
lated game-world,” Neuron, vol.  110, no.  23, 
pp. 3952–3969, 2022.

[7]	 K. Warwick, S. J. Nasuto, V. M. Becerra, 
and B. J. Whalley, “Experiments with an in-
v it ro robot bra in,” in Computing With 
Instinct, Berlin, Germany:Springer, 2011,  
pp. 1–15.

[8]	 D. J. Bakkum et al., “Embodying cultured 
networks with a robotic drawing arm,” in Proc. 
29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 
2007, pp. 2996–2999.

[9]	 L. Smirnova et al., “Organoid intelligence 
(OI): The new frontier in biocomputing and 
intelligence-in-a-dish,” Front. Sci., vol. 1, 2023, 
Art. no. 1017235.

[10]	 A. Tero et al., “Rules for biologically inspired 
adaptive network design,” Science, vol.  327, 
no. 5964, pp. 439–442, 2010.

[11]	 N. Roberts and A. Adamatzky, “Mining logical 
circuits in fungi,” Sci. Rep., vol. 12, no. 1, 2022, 
Art. no. 15930.

[12]	 K. Sarkar, D. Bonnerjee, R. Srivastava, and 
S. Bagh, “A single layer artif icial neural net-
work type architecture with molecular engi-
neered bacteria for reversible and irreversible 
computing,” Chem. Sci., vol.  12, no.  48,  
pp. 15821–15832, 2021.

[13]	 L. Rizik, L. Danial, M. Habib, R. Weiss, and R. 
Daniel, “Synthetic neuromorphic computing in 
living cells,” Nature Commun., vol.  13, no.  1, 
pp. 1–17, 2022.

[14]	 A. Pandi et al., “Metabolic perceptrons for neu-
ral computing in biological systems,” Nature 
Commun., vol. 10, no. 1, pp. 1–13, 2019.

[15]	 M. Pierobon and I. F. Akyildiz, “A physical end-
to-end model for molecular communication in 
nanonetworks,” IEEE J. Sel. Areas Commun., 
vol. 28, no. 4, pp. 602–611, May 2010.

[16]	 V. Jamali, A. Ahmadzadeh, C. Jardin, H. Sticht, 
and R. Schober, “Channel estimation for diffusive 
molecular communications,” IEEE Trans. Com-
mun., vol. 64, no. 10, pp. 4238–4252, Oct. 2016.

[17]	 W. Guo et al., “Molecular communications: 
Channel model and physical layer techniques,” 
IEEE Wireless Commun., vol.  23, no.  4, 
pp. 120–127, Aug. 2016.

[18]	 C. Wu, L. Lin, W. Guo, and H. Yan, “Signal 
detection for molecular MIMO communica-
tions with asymmetrical topology,” IEEE Trans. 
Mol., Biol. Multi-Scale Commun., vol.  6, no. 1, 
pp. 60–70, Jul. 2020.

[19]	 X. Chen, Y. Huang, L.-L. Yang, and M. Wen, 
“Generalized molecular-shift keying (GMOSK): 
Principles and performance analysis,” IEEE 
Trans. Mol., Biol. Multi-Scale Commun., vol.  6, 
no. 3, pp. 168–183, Dec. 2020.

[20]	 A. O. Bicen, I. F. Akyildiz, S. Balasubramaniam, 
and Y. Koucheryavy, “Linear channel modeling 
and error analysis for intra/inter-cellular Ca2+ 
molecular communication,” IEEE Trans. Nano-
biosci., vol. 15, no. 5, pp. 488–498, Jul. 2016.

[21]	 A. Ahmadzadeh, A. Noel, and R. Schober, 
“Analysis and design of multi-hop diffusion-
based molecular communication networks,” 
IEEE Trans. Mol., Biol. Multi-Scale Commun., 
vol. 1, no. 2, pp. 144–157, 2015.

[22]	 Y. Deng, A. Noel, W. Guo, A. Nallanathan, and 
M. Elkashlan, “Analyzing large-scale multiuser 
molecular communication via 3-d stochastic 
geometry,” IEEE Trans. Mol., Biol. Multi-Scale 
Commun., vol. 3, no. 2, pp. 118–133, Jul. 2017.

[23]	 N. Farsad, D. Pan, and A. Goldsmith, “A novel 
experimental platform for in-vessel multi-chem-
ical molecular communications,” in Proc. IEEE 
Glob. Commun. Conf., 2017, pp. 1–6.

[24]	 L. Grebenstein et al., “Biological optical-to-
chemical signal conversion interface: A small-
scale modulator for molecular communications,” 
in Proc. 5th ACM Int. Conf. Nanoscale Comput. 
Commun., 2018, pp. 1–6.

[25]	 P. M. Pf lüger and F. Glorius, “Molecular 
machine learning: The future of synthetic chem-
istry?,” Angewandte Chemie Int. Ed., vol.  59, 
no. 43, pp. 18860–18865, 2020.

[26]	 E. A. Liberman and S. V. Minina, “Cell molecu-
lar computers and biological information as the 
foundation of nature’s laws,” BioSystems, vol. 38, 
no. 2-3, pp. 173–177, 1996.

[27]	 C.-Y. Yang et a l., “Encoding membrane- 
potent ia l-based memory within a micro-
bial community,” Cell Syst., vol.  10, no.  5,  
pp. 417–423, 2020.

[28]	 A. G. Becerra, M. Gutiérrez, and R. Lahoz-
Beltra, “Computing within bacteria: Program-
ming of bacterial behavior by means of a plasmid 
encoding a perceptron neural network,” Biosys-
tems, vol. 213, 2022, Art. no. 104608.

[29]	 X. Li, L. Rizik, V. Kravchik, M. Khoury, N. 
Korin, and R. Daniel, “Synthetic neural-like 
computing in microbial consortia for pattern 
recognition,” Nature Commun., vol.  12, no. 1, 
pp. 1–12, 2021.

[30]	 D. Bray, “Protein molecules as computation-
al elements in living cells,” Nature, vol.  376, 
no. 6538, pp. 307–312, 1995.

[31]	 P. E. Schavemaker, A. J. Boersma, and B. Pool-
man, “How important is protein diffusion in 
prokaryotes?,” Front. Mol. Biosci., vol.  5, 2018, 
Art. no. 93.

[32]	 M. V. Grosso-Becerra, G. Croda-García, E. 
Merino, L. Servín-González, R. Mojica-Espi-
nosa, and G. Soberón-Chávez, “Regulation of 
pseudomonas aeruginosa virulence factors by 
two novel RNA thermometers,” Proc. Nat. Acad. 
Sci., vol. 111, no. 43, pp. 15562–15567, 2014.

[33]	 J. S. van Zon, M. J. Morelli, S. Tǎnase-Nicola, 
and P. R. ten Wolde, “Diffusion of transcrip-
tion factors can drastically enhance the noise 
in gene expression,” Biophys. J., vol. 91, no. 12, 
pp. 4350–4367, 2006.

[34]	 N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. 
Chae, and W. Guo, “A comprehensive survey of 
recent advancements in molecular communica-
tion,” IEEE Commun. Surv. Tut., vol. 18, no. 3, 
pp. 1887–1919, thirdquarter 2016.

[35]	 E. Galán-Vásquez, B. C. Luna-Olivera, M. 
Ramírez-Ibáñez, and A. Martínez-Antonio, 
“RegulomePA: A database of transcriptional 
regulatory interactions in pseudomonas aeru-
ginosa PAO1,” Database, vol.  2020, 2020, 
Art. no. baaa106.

[36]	 V. Venturi, “Regulation of quorum sensing in 
pseudomonas,” FEMS Microbiol. Rev., vol.  30, 
no. 2, pp. 274–291, 2006.

[37]	 V. I. Francis, E. C. Stevenson, and S. L. Por-
ter, “Two-component systems required for 
v i ru lence in Pseudomonas aeruginosa,” 
FEMS Microbiol. Lett., vol.  364, no.  11, 2017,  
Art. no. fnx104.

[38]	 X. Meng, S. D. Ahator, and L.-H. Zhang, 
“Molecular mechanisms of phosphate stress 
activation of Pseudomonas aeruginosa quorum 
sensing systems,” MSphere, vol. 5, no. 2, 2020, 
Art. no. e00119–20.

[39]	 S. S. Somathilaka, D. P. Martins, and S. Bala-
subramaniam, “Information f low of cascading 
bacterial molecular communication systems with 
cooperative amplification,” in Proc. IEEE Int. 
Conf. Commun., 2022, pp. 1728–1733.

[40]	 S. S. Somathilaka, D. P. Martins, W. Barton, O. 
O’Sullivan, P. D. Cotter, and S. Balasubramani-
am, “A graph-based molecular communications 
model analysis of the human gut bacteriome,” 
IEEE J. Biomed. Health Informat., vol. 26, no. 7, 
pp. 3567–3577, Jul. 2022.

[41]	 A. Korngreen, V. Gold’shtein, and Z. Priel, “A 
realistic model of biphasic calcium transients 
in electrically nonexcitable cells,” Biophys. J., 
vol. 73, no. 2, pp. 659–673, 1997.

[42]	 P. He, T. Nakano, D. Wu, B. Yang, H. Liu, and 
X. Han, “Calcium signaling in mobile molecular 
communication networks,” in Proc. IEEE Glob. 
Commun. Conf., 2019, pp. 1–6.

[43]	 C. Allan, R. J. Morris, and C.-N. Meisrim-
ler, “Encoding, transmission, decoding, and 
specif icity of calcium signals in plants,” J. 
Exp. Botany, vol.  73, no.  11, pp.  3372–3385,  
2022.

[44]	 M. T. Barros, S. Balasubramaniam, B. Jen-
nings, and Y. Koucheryavy, “Transmission pro-
tocols for calcium-signaling-based molecular 
communications in deformable cellular tis-
sue,” IEEE Trans. Nanotechnol., vol.  13, no. 4,  
pp. 779–788, Jul. 2014.

[45]	 I. F. Akyildiz, M. Pierobon, S. Balasubrama-
niam, and Y. Koucheryavy, “The internet of Bio-
Nano Things,” IEEE Commun. Mag., vol.  53, 
no. 3, pp. 32–40, Mar. 2015.

�

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on October 11,2024 at 15:58:00 UTC from IEEE Xplore.  Restrictions apply. 


